Ring Transformations of Heterocyclic Compounds. XXI [1].
 Diastereoselective Built-up of an Aroylcyclohexadiene
 Moiety as Second Spiro-connected Ring at Spiroindolines
 by Pyrylium Ring Transformation
 Thomas Zimmermann

Institut für Organische Chemie der Universität Leipzig, Permoserstraße 15, D-04303 Leipzig, Germany
Received February 5, 2001
2,4,6-Triarylpyrylium perchlorates $\mathbf{1}$ react with methyleneindolines $\mathbf{3}$ in situ generated from the corresponding methylindolium salts $\mathbf{2}$, which are spiro-fused with a cycloalkane, benzanellated cycloalkene or a heterocyclic system. These diastereoselective $2,5-\left[\mathrm{C}_{4}+\mathrm{C}_{2}\right]$ pyrylium ring transformations are carried out in the presence of triethylamine/acetic acid in boiling ethanol to give the dispiroindolines $\mathbf{4}$ with a trans configuration of the more bulky substituents at the cyclohexadiene ring. By the same type of transformation the dispiro compounds $\mathbf{7 / 1 0}$ with an additional fused benzene ring are obtained from the pyrylium salt $\mathbf{1 a}$ and $\mathbf{6 / 9}$, the benzo-fused analogues of $\mathbf{3}$. Spectroscopic data of the transformation products as well as their mode of formation are discussed.
J. Heterocyclic Chem., 39, 255 (2002).

Ring transformation reactions of heterocycles have been proven to be a powerful tool for the synthesis of a wide range of carbocyclic as well as heterocyclic compounds [2]. Although numerous examples are reported in the literature which proceed with high chemo- and regioselectivity our knowledge on the diastereoselectivity of such reactions is rather small.

Some years ago we have found that 2,4,6-triarylpyrylium salts 1 [3] react with 1-methyl and 1-phenyl substituted 3,3-
dimethyl-2-methyleneindolines (Fischer base and derivatives thereof) [4] to yield aroylspiro[cyclohexadiene-indolines] [5] which represent a novel class of photochromic compounds [6]. From the two possible diastereomers only the one with the more bulky substituents in the trans position of the cyclohexadiene ring was obtained in high yield. In the same way, the pyrylium salts 1 react with benzofused methyleneindolines to give diastereomerically pure aroylspiro[cyclohexadiene-indolines] bearing an additional

$\mathbf{1}$	$\mathbf{2 / 3}$	Ar	Ar^{\prime}
\mathbf{a}	\mathbf{f}	Ph	Ph
\mathbf{a}	\mathbf{g}	Ph	Ph
\mathbf{a}	\mathbf{h}	Ph	Ph
\mathbf{a}	\mathbf{i}	Ph	Ph
\mathbf{a}	\mathbf{j}	Ph	Ph
\mathbf{a}	\mathbf{k}	Ph	Ph
\mathbf{a}	\mathbf{l}	Ph	Ph
\mathbf{a}	\mathbf{m}	Ph	Ph
\mathbf{a}	\mathbf{n}	Ph	Ph
\mathbf{a}	\mathbf{o}	Ph	Ph
\mathbf{a}	\mathbf{p}	Ph	Ph
\mathbf{a}	\mathbf{q}	Ph	Ph

R
Me
R^{\prime}

Me
$\mathrm{i}-\mathrm{Pr}$
$\mathrm{t}-\mathrm{Bu}$
MeO
F
Cl
Br
I
H
H
H
H

X	$\mathbf{4}$
$\left(\mathrm{CH}_{2}\right)_{5}$	\mathbf{s}
$\left(\mathrm{CH}_{2}\right)_{5}$	\mathbf{t}
$\left(\mathrm{CH}_{2}\right)_{5}$	\mathbf{u}
$\left(\mathrm{CH}_{2}\right)_{5}$	\mathbf{v}
$\left(\mathrm{CH}_{2}\right)_{5}$	\mathbf{w}
$\left(\mathrm{CH}_{2}\right)_{5}$	\mathbf{x}
$\left(\mathrm{CH}_{2}\right)_{5}$	\mathbf{y}
$\left(\mathrm{CH}_{2}\right)_{5}$	\mathbf{z}
$\left(\mathrm{CH}_{2}\right)_{6}$	$\mathbf{a a}$
$\mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{4}(\mathrm{o}) \mathrm{CH}_{2}$	$\mathbf{b b}$
$(\mathrm{o}) \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{C}_{6} \mathrm{H}_{4}(\mathrm{o})$	$\mathbf{c c}$
$\left(\mathrm{CH}_{2}\right)_{2} \mathrm{O}\left(\mathrm{CH}_{2}\right)_{2}$	$\mathbf{d d}$

benzene ring at the idoline moiety [1]. The transformations could further be extended to chiral methyleneindolines, i.e. to compounds with two different substituents at C-3. In this case, from the four possible diastereomers only one was obtained in high yield, the stereochemistry of which can be influenced by the bulkiness of the substituents at $\mathrm{C}-3$ of the methyleneindoline used [7].

Another possibility for structural variations of the indoline part of the aroylspiro[cyclohexadiene-indolines], which is necessary for further elucidation of the influence of structural changes on their photochromic properties, consists in the introduction of an additional spiro-fused carbo- or heterocycle instead of the two substituents at C3'. These compounds should be available by ring transformation of the pyrylium salts $\mathbf{1}$ with spiromethyleneindolines of the type $\mathbf{3}$, formed in situ by deprotonation of the related spiroindolium salts $\mathbf{2}$. In this paper we wish to present the results of such investigations.

When the 2,4,6-triarylpyrylium perchlorates 1a-i and the spiroindolium perchlorate 2a, possessing a cyclopentane ring at C-3', were refluxed in ethanol in the presence of triethylamine/acetic acid the transformation proceeded as expected to give the dispiro compounds $\mathbf{4 a - i}$ in $76-90 \%$ yield. On using the spiroindolium perchlorates $\mathbf{2 b}-\mathbf{n}$ with a cyclohexane ring at C-3' and various substituents at the nitrogen and in 5'-position or with a cyloheptane ring at C-3' the dispiroindolines $\mathbf{4 j}$-aa were obtained (yield $70-95 \%$). The transformations could further be extended to the spiroindolium perchlorates $\mathbf{2 0} \mathbf{- q}$, in which the spiro-fused ring is a benzanellated cycloalkene ($\mathbf{2 0}, \mathbf{p}$) or a heterocycle ($\mathbf{2 q}$) and to the benzo-fused derivatives $\mathbf{5 / 8}$. They gave rise to the dispiro compounds $\mathbf{4 b b}-\mathbf{d d}, \mathbf{7}$ and 10 in 62-89\% yield.

In all examples studied from the two possible diastereomers of $\mathbf{4 , 7}$ and $\mathbf{1 0}$ only that one with the more bulky substituents (ArCO and CX, $\mathrm{X}=$ spirocycle) trans positioned at the cyclohexadiene ring was formed as a racemate.

Table 1
Physical and Analytical Data for the Dispiro Compounds 4, 7 and 10

No.	Compound	Yield (\%)	Mp $\left({ }^{\circ} \mathrm{C}\right)$	Molecular Formula (Molecular Weight)		Analysi Calcd./F	
					C	H	N
4a	6-Benzoyl-1'-methyl-3,5-diphenyldispiro[cyclohexa-2,4-diene-1,2'-indoline- $3^{\prime}, 1$ "-cyclopentane]	90	181-182	$\begin{gathered} \mathrm{C}_{37} \mathrm{H}_{33} \mathrm{NO} \\ (507.7) \end{gathered}$	$\begin{aligned} & 87.54 \\ & 87.51 \end{aligned}$	6.55 6.60	2.76 2.77
4b	6-Benzoyl-1'-methyl-5-(4-methylphenyl)-3-phenyldispiro-[cyclohexa-2,4-diene-1,2'-indoline-3', 1 "-cyclopentane]	76	184-185	$\begin{gathered} \mathrm{C}_{38} \mathrm{H}_{35} \mathrm{NO} \\ (521.7) \end{gathered}$	87.49 87.58	6.76 6.80	3.07 3.10
4 c	6-Benzoyl-5-(4-methoxyphenyl)-1'-methyl-3-phenyldispiro-[cyclohexa-2,4-diene-1,2'-indoline-3',1"-cyclopentane]	86	177-178	$\begin{gathered} \mathrm{C}_{38} \mathrm{H}_{35} \mathrm{NO}_{2} \\ (537.7) \end{gathered}$	$\begin{aligned} & 84.88 \\ & 84.60 \end{aligned}$	6.56 6.61	2.60
4d	6-Benzoyl-5-(4-chlorophenyl)-1'-methyl-3-phenyldispiro[cyclohexa-2,4-diene-1,2'-indoline-3',1"-cyclopentane]	82	172-173	$\begin{gathered} \mathrm{C}_{37} \mathrm{H}_{32} \mathrm{ClNO} \\ (542.1) \end{gathered}$	81.98 82.00	5.95 6.00	2.58 2.68
4 e	6-Benzoyl-5-(4-bromophenyl)-1'-methyl-3-phenyldispiro[cyclohexa-2,4-diene-1,2'-indoline-3',1"-cyclopentane]	86	158-159	$\begin{gathered} \mathrm{C}_{37} \mathrm{H}_{32} \mathrm{BrNO} \\ (586.6) \end{gathered}$	$\begin{aligned} & 75.76 \\ & 75.80 \end{aligned}$	5.50 5.55	2.39 2.41
4 f	6-Benzoyl-1'-methyl-5-(4-nitrophenyl)-3-phenyldispiro[cyclohexa-2,4-diene-1,2'-indoline-3',1"-cyclopentane]	88	203-204	$\begin{gathered} \mathrm{C}_{37} \mathrm{H}_{32} \mathrm{~N}_{2} \mathrm{O}_{3} \\ (552.7) \end{gathered}$	80.41 80.30	5.84 5.90	5.07 5.15
4g	1'-Methyl-6-(4-methylbenzoyl)-3-(4-methylphenyl)-5-phenyl-dispiro[cyclohexa-2,4-diene-1,2'-indoline-3',1"-cyclopentane]	78	198-199	$\begin{gathered} \mathrm{C}_{39} \mathrm{H}_{37} \mathrm{NO} \\ (535.7) \end{gathered}$	$\begin{aligned} & 87.44 \\ & 87.50 \end{aligned}$	6.96 7.01	2.61
4h	6-(4-Chlorobenzoyl)-3-(4-chlorophenyl)-1'-methyl-5-phenyldispiro[cyclohexa-2,4-diene-1,2'-indoline-3',1"-cyclopentane]	80	180-181	$\underset{(576.6)}{\mathrm{C}_{37} \mathrm{H}_{31} \mathrm{Cl}_{2} \mathrm{NO}}$	77.08 77.20	5.42 5.51	2.43 2.50
$4 i$	6-(4-Bromobenzoyl)-3-(4-bromophenyl)-1'-methyl-5-phenyld-ispiro[cyclohexa-2,4-diene-1,2'-indoline-3',1"-cyclopentane]	81	197-198	$\begin{gathered} \mathrm{C}_{37} \mathrm{H}_{31} \mathrm{Br}_{2} \mathrm{NO} \\ (665.5) \end{gathered}$	$\begin{aligned} & 66.78 \\ & 66.85 \end{aligned}$	4.70 4.73	2.10 2.22
4j	6-Benzoyl-1'-methyl-3,5-diphenyldispiro[cyclohexa-2,4-diene-1,2'-indoline-3',1"-cyclohexane]	94	222-223	$\begin{gathered} \mathrm{C}_{38} \mathrm{H}_{35} \mathrm{NO} \\ (521.7) \end{gathered}$	87.49 87.52	6.76 6.73	2.68
4k	6-Benzoyl-1'-methyl-5-(4-methylphenyl)-3-phenyldispiro[cyclo-hexa-2,4-diene-1,2'-indoline-3',1"-cyclohexane]	91	205-206	$\begin{gathered} \mathrm{C}_{39} \mathrm{H}_{37} \mathrm{NO} \\ (535.7) \end{gathered}$	$\begin{aligned} & 87.44 \\ & 87.45 \end{aligned}$	6.96 7.05	2.61
41	6-Benzoyl-5-(4-chlorophenyl)-1'-methyl-3-phenyldispiro[cyclohexa-2,4-diene-1,2'-indoline-3',1"-cyclohexane]	85	167-168	$\underset{(556.2)}{\mathrm{C}_{38} \mathrm{H}_{34} \mathrm{ClNO}}$	82.07 82.15	6.16 6.23	2.52
4m	1'-Methyl-6-(4-methylbenzoyl)-3-(4-methylphenyl)-5-phenyl-dispiro[cyclohexa-2,4-diene-1,2'-indoline-3',1"-cyclohexane]	90	232-233	$\begin{gathered} \mathrm{C}_{40} \mathrm{H}_{39} \mathrm{NO} \\ (549.8) \end{gathered}$	$\begin{aligned} & 87.39 \\ & 87.48 \end{aligned}$	7.15 7.21	2.55 2.48
4n	6-(4-Chlorobenzoyl)-3-(4-chlorophenyl)-1'-methyl-5-phenyldispiro[cyclohexa-2,4-diene-1,2'-indoline-3',1"-cyclohexane]	95	205-206	$\underset{(590.6)}{\mathrm{C}_{38} \mathrm{H}_{33} \mathrm{Cl}_{2} \mathrm{NO}}$	77.28 77.30	5.63 5.70	2.37 2.40
40	6-(4-Bromobenzoyl)-3-(4-bromophenyl)-1'-methyl-5-phenyld-ispiro[cyclohexa-2,4-diene-1, 2'-indoline-3',1"-cyclohexane]	92	210-211	$\underset{(679.5)}{\mathrm{C}_{38} \mathrm{H}_{33} \mathrm{Br}_{2} \mathrm{NO}}$	$\begin{aligned} & 67.17 \\ & 67.25 \end{aligned}$	4.90 4.92	2.06 2.11
4p	6-Benzoyl-1'-ethyl-3,5-diphenyldispiro[cyclohexa-2,4-diene-1,2'-indoline-3',1"-cyclohexane]	92	242-243	$\begin{gathered} \mathrm{C}_{39} \mathrm{H}_{37} \mathrm{NO} \\ (535.7) \end{gathered}$	$\begin{aligned} & 87.44 \\ & 87.30 \end{aligned}$	6.96 7.00	2.61 2.60
$4 q$	6-Benzoyl-1'-isoprpyl-3,5-diphenyldispiro[cyclohexa-2,4-diene-1,2'-indoline-3',1"-cyclohexane]	92	188-189	$\begin{gathered} \mathrm{C}_{40} \mathrm{H}_{39} \mathrm{NO} \\ (549.8) \end{gathered}$	$\begin{aligned} & 87.39 \\ & 87.41 \end{aligned}$	7.15 7.20	2.55 2.50
4r	6-Benzoyl-1',3,5-triphenyldispiro[cyclohexa-2,4-diene-1,2'-indoline-3',1"-cyclohexane]	70	237-238	$\begin{gathered} \mathrm{C}_{43} \mathrm{H}_{37} \mathrm{NO} \\ (583.8) \end{gathered}$	$\begin{aligned} & 88.47 \\ & 88.50 \end{aligned}$	6.39 6.41	2.40
4s	6-Benzoyl-1',5'-dimethyl-3,5-diphenyldispiro[cyclohexa-2,4-diene-1,2'-indoline-3',1"-cyclohexane]	88	211-212	$\begin{gathered} \mathrm{C}_{39} \mathrm{H}_{37} \mathrm{NO} \\ (535.7) \end{gathered}$	$\begin{aligned} & 87.44 \\ & 87.50 \end{aligned}$	6.96 7.00	2.61 2.70
4t	6-Benzoyl-5'-isopropyl-1'-methyl-3,5-diphenyldispiro[cyclohexa-2,4-diene-1,2'-indoline-3',1"-cyclohexane]	95	230-231	$\begin{gathered} \mathrm{C}_{41} \mathrm{H}_{41} \mathrm{NO} \\ (563.8) \end{gathered}$	$\begin{aligned} & 87.35 \\ & 87.30 \end{aligned}$	7.33 7.40	2.48
4u	6-Benzoyl-5'-tert-butyl-1'-methyl-3,5-diphenyldispiro[cyclohexa-2,4-diene-1, 2^{\prime}-indoline- 3 ', 1"-cyclohexane]	84	234-235	$\begin{gathered} \mathrm{C}_{42} \mathrm{H}_{43} \mathrm{NO} \\ (577.8) \end{gathered}$	$\begin{aligned} & 87.31 \\ & 87.45 \end{aligned}$	7.50 7.53	2.42
4v	6-Benzoyl-5'-methoxy-1'-methyl-3,5-diphenyldispiro[cyclohexa-2,4-diene-1,2'-indoline-3',1"-cyclohexane]	92	218-219	$\begin{gathered} \mathrm{C}_{39} \mathrm{H}_{37} \mathrm{NO}_{2} \\ (551.7) \end{gathered}$	$\begin{aligned} & 84.90 \\ & 84.90 \end{aligned}$	6.76 6.82	2.54 2.60
4w	6-Benzoyl-5'-fluoro-1'-methyl-3,5-diphenyldispiro[cyclohexa-2,4-diene-1,2'-indoline-3',1"-cyclohexane]	93	218-219	$\underset{(539.7)}{\mathrm{C}_{38} \mathrm{H}_{34} \mathrm{FNO}}$	84.57 84.62	6.35 6.41	2.60
4x	6-Benzoyl-5'-chloro-1'-methyl-3,5-diphenyldispiro[cyclohexa-2,4-diene-1,2'-indoline-3',1"-cyclohexane]	82	226-227	$\underset{(556.2)}{\mathrm{C}_{38} \mathrm{H}_{34} \mathrm{ClNO}}$	$\begin{aligned} & 82.07 \\ & 82.22 \end{aligned}$	6.16 6.20	2.52
4y	6-Benzoyl-5'-bromo-1'-methyl-3,5-diphenyldispiro[cyclohexa-2,4-diene-1,2'-indoline-3',1"-cyclohexane]	92	227-228	$\frac{\mathrm{C}_{38} \mathrm{H}_{34} \mathrm{BrNO}}{(600.6)}$	75.99 76.00	5.71 5.82	2.33 2.30
4z	6-Benzoyl-5'-iodo-1'-methyl-3,5-diphenyldispiro[cyclohexa-2,4-diene-1,2'-indoline-3',1"-cyclohexane]	90	239-240	$\underset{(647.6)}{\mathrm{C}_{38} \mathrm{H}_{34} \mathrm{INO}}$	$\begin{aligned} & 70.48 \\ & 70.53 \end{aligned}$	$\begin{aligned} & 5.29 \\ & 5.36 \end{aligned}$	2.16 2.20
4aa	6"-Benzoyl-1'-methyl-3",5"-diphenyldispiro[cycloheptane-1,3'-indo-line-2',1"-cyclohexa-[2.4]diene]	95	229-230	$\begin{gathered} \mathrm{C}_{39} \mathrm{H}_{37} \mathrm{NO} \\ (535.7) \end{gathered}$	87.44 87.39	6.96 7.01	2.99 2.90
4bb	6-Benzoyl-1'-methyl-3,5-diphenyldispiro[cyclohexa-2,4-diene-1,2'-indoline- $3^{\prime}, 2^{\prime \prime}$-indane]	89	206-207	$\begin{gathered} \mathrm{C}_{41} \mathrm{H}_{33} \mathrm{NO} \\ (555.7) \end{gathered}$	$\begin{aligned} & 88.62 \\ & 88.61 \end{aligned}$	5.99 6.03	2.52
4cc	6-Benzoyl-1'-methyl-3,5-diphenyldispiro[cyclohexa-2,4-diene-1,2'-indoline-3',9"-fluorene]	81	189-190	$\begin{gathered} \mathrm{C}_{45} \mathrm{H}_{33} \mathrm{NO} \\ (603.8) \end{gathered}$	89.52 89.61	5.01 5.11	2.32 2.40
4dd	6-Benzoyl-1'-methyl-3,5-diphenyldispiro[cyclohexa-2,4-diene-1,2'-indoline-3',4"-tetrahydropyrane]	78	228-229	$\begin{gathered} \mathrm{C}_{37} \mathrm{H}_{33} \mathrm{NO}_{2} \\ (523.7) \end{gathered}$	$\begin{aligned} & 84.86 \\ & 84.70 \end{aligned}$	6.35 6.41	2.67 2.70
7	6-Benzoyl-3'-methyl-3,5-diphenyldispiro[cyclohexa-2,4-diene-1,2'-benzo[e]indole-1',1"-cyclohexane]	76	187-188	$\begin{gathered} \mathrm{C}_{42} \mathrm{H}_{37} \mathrm{NO} \\ (571.8) \end{gathered}$	88.23 88.30	6.52 6.58	2.45 2.41
10	6-Benzoyl-1'-methyl-3,5-diphenyldispiro[cyclohexa-2,4-diene-1,2'-benzo[g]indoel-3',1"-cyclohexane]	62	228-229	$\begin{gathered} \mathrm{C}_{42} \mathrm{H}_{37} \mathrm{NO} \\ (571.8) \end{gathered}$	$\begin{aligned} & 88.23 \\ & 88.11 \end{aligned}$	$\begin{aligned} & 6.52 \\ & 6.48 \end{aligned}$	2.45

Table 2
Spectral Data for the Dispiro Compounds 4, $\mathbf{7}$ and 10

Compound	$\begin{gathered} \text { IR (KBr) } \\ \left(\mathrm{cm}^{-1}\right) \\ \mathrm{CO} \end{gathered}$	$\begin{gathered} \mathrm{UV}\left(\mathrm{CH}_{3} \mathrm{CN}\right) \\ \lambda_{\max }^{(\mathrm{nm})} \\ (\log \varepsilon) \end{gathered}$	$\delta(\mathrm{ppm})$
4a [b],[c]	1677	$\begin{gathered} 254(4.61), 311(4.02), 410 \mathrm{sh} \\ (2.98) \end{gathered}$	$\begin{aligned} & 1.29-2.28\left(\mathrm{~m}, 8 \mathrm{H}, 3^{\prime}, 33^{\prime}-\left(\mathrm{CH}_{2}\right)_{4}\right), 2.45\left(\mathrm{~s}, 3 \mathrm{H}, 1^{\prime}-\mathrm{CH}_{3}\right), 5.37(\mathrm{~s}, 1 \mathrm{H}, 6-\mathrm{H}), 5.53\left(\mathrm{~d}, 1 \mathrm{H}, 7^{\prime}-\mathrm{H}\right), 5.94 \\ & (\mathrm{~s}, 1 \mathrm{H}, 2-\mathrm{H}), 6.81(\mathrm{~s}, 1 \mathrm{H}, 4-\mathrm{H}), 6.55-7.60(\mathrm{~m}, 18 \mathrm{H}, \operatorname{arom}-\mathrm{H}) \end{aligned}$
4b	1676	$\begin{gathered} 254(4.62), 311 \mathrm{sh}(4.08), 417 \\ \operatorname{sh}(3.00) \end{gathered}$	$1.27-2.28\left(\mathrm{~m}, 8 \mathrm{H}, 3^{\prime}, 3{ }^{\prime}-\left(\mathrm{CH}_{2}\right)_{4}\right), 2.14\left(\mathrm{~s}, 3 \mathrm{H}, 5-\mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{4}\right), 2.45\left(\mathrm{~s}, 3 \mathrm{H}, 1^{\prime}-\mathrm{CH}_{3}\right), 5.37(\mathrm{~s}, 1 \mathrm{H}, 6-$ H), $5.53\left(\mathrm{~d}, 1 \mathrm{H}, 7^{\prime}-\mathrm{H}\right), 5.92(\mathrm{~s}, 1 \mathrm{H}, 2-\mathrm{H}), 6.79(\mathrm{~s}, 1 \mathrm{H}, 4-\mathrm{H}), 6.54-7.61(\mathrm{~m}, 17 \mathrm{H}$, arom-H)
4c	1676	$\begin{gathered} 251 \text { (4.57), } 270 \operatorname{sh}(4.47), 315 \\ (4.11), 417 \operatorname{sh}(3.13) \end{gathered}$	$1.25-2.34\left(\mathrm{~m}, 8 \mathrm{H}, 3^{\prime}, 3^{\prime}-\left(\mathrm{CH}_{2}\right)_{4}\right), 2.45\left(\mathrm{~s}, 3 \mathrm{H}, 1^{\prime}-\mathrm{CH}_{3}\right), 3.60\left(\mathrm{~s}, 3 \mathrm{H}, 5-\mathrm{CH}_{3} \mathrm{OC}_{6} \mathrm{H}_{4}\right), 5.35(\mathrm{~s}, 1 \mathrm{H} \text {, }$ $6-\mathrm{H}), 5.53\left(\mathrm{~d}, 1 \mathrm{H}, 7^{\prime}-\mathrm{H}\right), 5.89(\mathrm{~s}, 1 \mathrm{H}, 2-\mathrm{H}), 6.73(\mathrm{~s}, 1 \mathrm{H}, 4-\mathrm{H}), 6.54-7.61(\mathrm{~m}, 17 \mathrm{H}$, arom-H)
4d	1677	$256 \text { (4.64), } 314(4.09), 417 \mathrm{sh}$	$\begin{aligned} & 1.26-2.29\left(\mathrm{~m}, 8 \mathrm{H}, 3^{\prime}, 3^{\prime}-\left(\mathrm{CH}_{2}\right)_{4}\right), 2.45\left(\mathrm{~s}, 3 \mathrm{H}, 1^{\prime}-\mathrm{CH}_{3}\right), 5.32(\mathrm{~s}, 1 \mathrm{H}, 6-\mathrm{H}), 5.53\left(\mathrm{~d}, 1 \mathrm{H}, 7^{\prime}-\mathrm{H}\right), 5.96 \\ & (\mathrm{~s}, 1 \mathrm{H}, 2-\mathrm{H}), 6.79(\mathrm{~s}, 1 \mathrm{H}, 4-\mathrm{H}), 6.54-7.59(\mathrm{~m}, 17 \mathrm{H}, \operatorname{arom}-\mathrm{H}) \end{aligned}$
4e	1677	$\begin{gathered} 256 \text { (4.63), } 314(4.08), 417 \mathrm{sh} \\ (3.06) \end{gathered}$	$\begin{aligned} & 1.26-2.30\left(\mathrm{~m}, 8 \mathrm{H}, 3^{\prime}, 3^{\prime}-\left(\mathrm{CH}_{2}\right)_{4}\right), 2.45\left(\mathrm{~s}, 3 \mathrm{H}, 1^{\prime}-\mathrm{CH}_{3}\right), 5.31(\mathrm{~s}, 1 \mathrm{H}, 6-\mathrm{H}), 5.54\left(\mathrm{~d}, 1 \mathrm{H}, 7^{\prime}-\mathrm{H}\right), 5.96 \\ & (\mathrm{~s}, 1 \mathrm{H}, 2-\mathrm{H}), 6.80(\mathrm{~s}, 1 \mathrm{H}, 4-\mathrm{H}), 6.55-7.60(\mathrm{~m}, 17 \mathrm{H}, \operatorname{arom}-\mathrm{H}) \end{aligned}$
4 f	1676	$251 \text { (4.55), } 370(4.03), 455 \mathrm{sh}$	$\begin{aligned} & 1.29-2.27\left(\mathrm{~m}, 8 \mathrm{H}, 3^{\prime}, 33^{\prime}-\left(\mathrm{CH}_{2}\right)_{4}\right), 2.47\left(\mathrm{~s}, 3 \mathrm{H}, 1^{\prime}-\mathrm{CH}_{3}\right), 5.36(\mathrm{~s}, 1 \mathrm{H}, 6-\mathrm{H}), 5.56\left(\mathrm{~d}, 1 \mathrm{H}, 7^{\prime}-\mathrm{H}\right), 6.06 \\ & (\mathrm{~s}, 1 \mathrm{H}, 2-\mathrm{H}), 6.98(\mathrm{~s}, 1 \mathrm{H}, 4-\mathrm{H}), 6.56-7.97(\mathrm{~m}, 17 \mathrm{H}, \operatorname{arom}-\mathrm{H}) \end{aligned}$
4g	1675	$261 \text { (4.70), } 314(4.02), 417 \mathrm{sh}$	$1.24-2.22\left(\mathrm{~m}, 8 \mathrm{H}, 3^{\prime}, 3^{\prime}-\left(\mathrm{CH}_{2}\right)_{4}\right), 2.25\left(\mathrm{~s}, 3 \mathrm{H}, 3-\mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{4}\right), 2.32\left(\mathrm{~s}, 3 \mathrm{H}, 6-\mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CO}\right), 2.45(\mathrm{~s}$, $3 \mathrm{H}, \mathrm{1}^{\prime}-\mathrm{CH}_{3}$), $5.31(\mathrm{~s}, 1 \mathrm{H}, 6-\mathrm{H}), 5.58(\mathrm{~d}, 1 \mathrm{H}, 7 \mathrm{H}-\mathrm{H}), 5.90(\mathrm{~s}, 1 \mathrm{H}, 2-\mathrm{H}), 6.79(\mathrm{~s}, 1 \mathrm{H}, 4-\mathrm{H}), 6.53-$ $7.50(\mathrm{~m}, 16 \mathrm{H}$, arom-H)
4h	1678	$\begin{gathered} 260 \text { (4.72), } 314 \mathrm{sh}(4.02), 424 \\ \operatorname{sh}(2.95) \end{gathered}$	$\begin{aligned} & 1.29-2.25\left(\mathrm{~m}, 8 \mathrm{H}, 3^{\prime}, 3^{\prime}-\left(\mathrm{CH}_{2}\right)_{4}\right), 2.45\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{1}^{\prime}-\mathrm{CH}_{3}\right), 5.30(\mathrm{~s}, 1 \mathrm{H}, 6-\mathrm{H}), 5.59\left(\mathrm{~d}, 1 \mathrm{H}, 7^{\prime}-\mathrm{H}\right), 5.91 \\ & (\mathrm{~s}, 1 \mathrm{H}, 2-\mathrm{H}), 6.73(\mathrm{~s}, 1 \mathrm{H}, 4-\mathrm{H}), 6.57-7.51(\mathrm{~m}, 16 \mathrm{H}, \text { arom-H) } \end{aligned}$
4i	1678	$\begin{gathered} 263 \text { (4.76), } 313 \text { sh (4.04), } 417 \\ \text { sh (3.04) } \end{gathered}$	$\begin{aligned} & 1.23-2.28\left(\mathrm{~m}, 8 \mathrm{H}, 3^{\prime}, 3^{\prime}-\left(\mathrm{CH}_{2}\right)_{4}\right), 2.45\left(\mathrm{~s}, 3 \mathrm{H}, 1^{\prime}-\mathrm{CH}_{3}\right), 5.29(\mathrm{~s}, 1 \mathrm{H}, 6-\mathrm{H}), 5.59\left(\mathrm{~d}, 1 \mathrm{H}, 7^{\prime}-\mathrm{H}\right), 5.92 \\ & (\mathrm{~s}, 1 \mathrm{H}, 2-\mathrm{H}), 6.72(\mathrm{~s}, 1 \mathrm{H}, 4-\mathrm{H}), 6.56-7.50(\mathrm{~m}, 16 \mathrm{H}, \operatorname{arom}-\mathrm{H}) \end{aligned}$
4j [b],[c]	1678	$\begin{gathered} 255(4.61), 309 \operatorname{sh}(4.04), 417 \\ \operatorname{sh}(3.08) \end{gathered}$	$\begin{aligned} & 1.09-1.91\left(\mathrm{~m}, 10 \mathrm{H}, 3 \mathrm{\prime}, 3 \mathrm{'}^{-}\left(\mathrm{CH}_{2}\right)_{5}\right), 2.46\left(\mathrm{~s}, 3 \mathrm{H}, 1^{\prime}-\mathrm{CH}_{3}\right), 5.30(\mathrm{~s}, 1 \mathrm{H}, 6-\mathrm{H}), 5.48\left(\mathrm{~d}, 1 \mathrm{H}, 7^{\prime}-\mathrm{H}\right) \text {, } \\ & 5.96(\mathrm{~s}, 1 \mathrm{H}, 2-\mathrm{H}), 6.81(\mathrm{~s}, 1 \mathrm{H}, 4-\mathrm{H}), 6.53-7.63(\mathrm{~m}, 18 \mathrm{H}, \operatorname{arom}-\mathrm{H}) \end{aligned}$
4k	1679	$\begin{gathered} 255(4.63), 313 \operatorname{sh}(4.10), 417 \\ \operatorname{sh}(3.06) \end{gathered}$	0.99-2.04 (m, 10H, 3', $\left.3^{\prime}-\left(\mathrm{CH}_{2}\right)_{5}\right), 2.14\left(\mathrm{~s}, 3 \mathrm{H}, 5-\mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{4}\right), 2.46\left(\mathrm{~s}, 3 \mathrm{H}, 1^{\prime}-\mathrm{CH}_{3}\right), 5.30(\mathrm{~s}, 1 \mathrm{H}, 6-$ H), $5.49\left(\mathrm{~d}, 1 \mathrm{H}, 7^{\prime}-\mathrm{H}\right), 5.93(\mathrm{~s}, 1 \mathrm{H}, 2-\mathrm{H}), 6.78(\mathrm{~s}, 1 \mathrm{H}, 4-\mathrm{H}), 6.53-7.63(\mathrm{~m}, 17 \mathrm{H}$, arom-H)
41	1678	$\begin{gathered} 256(4.63), 312(4.10), 417 \mathrm{sh} \\ (3.15) \end{gathered}$	$\begin{aligned} & 1.02-1.97\left(\mathrm{~m}, 10 \mathrm{H}, 3^{\prime}, 3{ }^{\prime}-\left(\mathrm{CH}_{2}\right)_{5}\right), 2.46\left(\mathrm{~s}, 3 \mathrm{H}, 1^{\prime}-\mathrm{CH}_{3}\right), 5.25(\mathrm{~s}, 1 \mathrm{H}, 6-\mathrm{H}), 5.49\left(\mathrm{~d}, 1 \mathrm{H}, 7^{\prime}-\mathrm{H}\right) \text {, } \\ & 5.97(\mathrm{~s}, 1 \mathrm{H}, 2-\mathrm{H}), 6.79(\mathrm{~s}, 1 \mathrm{H}, 4-\mathrm{H}), 6.54-7.62(\mathrm{~m}, 17 \mathrm{H}, \operatorname{arom}-\mathrm{H}) \end{aligned}$
4m	1675	$261 \text { (4.67), } 311 \text { (4.02), } 413 \mathrm{sh}$	1.06-1.90 (m, 10H, 3', 3'-($\left.\left.\mathrm{CH}_{2}\right)_{5}\right), 2.27\left(\mathrm{~s}, 3 \mathrm{H}, 3-\mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{4}\right), 2.34\left(\mathrm{~s}, 3 \mathrm{H}, 6-\mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CO}\right), 2.46$ $\left(\mathrm{s}, 3 \mathrm{H}, 1^{\prime}-\mathrm{CH}_{3}\right), 5.23(\mathrm{~s}, 1 \mathrm{H}, 6-\mathrm{H}), 5.54\left(\mathrm{~d}, 1 \mathrm{H}, 7 \mathrm{7}^{\prime}-\mathrm{H}\right), 5.91(\mathrm{~s}, 1 \mathrm{H}, 2-\mathrm{H}), 6.79(\mathrm{~s}, 1 \mathrm{H}, 4-\mathrm{H}), 6.52-$ $7.53(\mathrm{~m}, 16 \mathrm{H}$, arom-H)
4n	1677	$\begin{gathered} 261(4.74), 311 \operatorname{sh}(4.07), 424 \\ \operatorname{sh}(3.16) \end{gathered}$	$\begin{aligned} & 1.05-2.00\left(\mathrm{~m}, 10 \mathrm{H}, 3^{\prime}, 3^{\prime}-\left(\mathrm{CH}_{2}\right)_{5}\right), 2.45\left(\mathrm{~s}, 3 \mathrm{H}, 1^{\prime}-\mathrm{CH}_{3}\right), 5.23(\mathrm{~s}, 1 \mathrm{H}, 6-\mathrm{H}), 5.55\left(\mathrm{~d}, 1 \mathrm{H}, 7^{\prime}-\mathrm{H}\right), \\ & 5.93(\mathrm{~s}, 1 \mathrm{H}, 2-\mathrm{H}), 6.73(\mathrm{~s}, 1 \mathrm{H}, 4-\mathrm{H}), 6.55-7.54(\mathrm{~m}, 16 \mathrm{H}, \operatorname{arom}-\mathrm{H}) \end{aligned}$
40	1677	$\begin{gathered} 263 \text { (4.77), } 313 \operatorname{sh}(4.06), 417 \\ \operatorname{sh}(3.11) \end{gathered}$	$\begin{aligned} & 1.11-1.97\left(\mathrm{~m}, 10 \mathrm{H}, 3^{\prime}, 3^{\prime}-\left(\mathrm{CH}_{2}\right)_{5}\right), 2.45\left(\mathrm{~s}, 3 \mathrm{H}, 1^{\prime}-\mathrm{CH}_{3}\right), 5.22(\mathrm{~s}, 1 \mathrm{H}, 6-\mathrm{H}), 5.56\left(\mathrm{~d}, 1 \mathrm{H}, 7^{\prime}-\mathrm{H}\right), \\ & 5.93(\mathrm{~s}, 1 \mathrm{H}, 2-\mathrm{H}), 6.72(\mathrm{~s}, 1 \mathrm{H}, 4-\mathrm{H}), 6.56-7.50(\mathrm{~m}, 16 \mathrm{H}, \operatorname{arom}-\mathrm{H}) \end{aligned}$
4p	1676	$254 \text { (4.54), } 313 \text { (3.94), } 417 \mathrm{sh}$	$0.89\left(\mathrm{t}, 3 \mathrm{H}, 1^{\prime}-\mathrm{CH}_{2} \mathrm{CH}_{3}\right), 1.09-2.00\left(\mathrm{~m}, 10 \mathrm{H}, 3^{\prime}, 3^{\prime}-\left(\mathrm{CH}_{2}\right)_{5}\right), 2.46\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{1}^{\prime}-\mathrm{CH}_{2} \mathrm{CH}_{3}\right), 3.05(\mathrm{~m}$, $1 \mathrm{H}, 1^{\prime}-\mathrm{CH}_{2} \mathrm{CH}_{3}$), $5.30(\mathrm{~s}, 1 \mathrm{H}, 6-\mathrm{H}), 5.42\left(\mathrm{~d}, 1 \mathrm{H}, 7{ }^{\prime}-\mathrm{H}\right), 5.92(\mathrm{~s}, 1 \mathrm{H}, 2-\mathrm{H}), 6.80(\mathrm{~s}, 1 \mathrm{H}, 4-\mathrm{H})$, $6.51-7.63(\mathrm{~m}, 18 \mathrm{H}$, arom-H)
4q	1679	$252 \text { (4.56), } 311(4.00), 410 \mathrm{sh}$	$0.82\left(\mathrm{~d}, 3 \mathrm{H}, 1-\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 1.14\left(\mathrm{~d}, 3 \mathrm{H}, 1-\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 1.26-2.01\left(\mathrm{~m}, 10 \mathrm{H}, 3\right.$ ', $\left.3^{\prime}-\left(\mathrm{CH}_{2}\right)_{5}\right), 3.67$ $\left(\mathrm{m}, 1 \mathrm{H}, 1-\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 5.36(\mathrm{~s}, 1 \mathrm{H}, 6-\mathrm{H}), 6.00(\mathrm{~s}, 1 \mathrm{H}, 2-\mathrm{H}), 6.19\left(\mathrm{~d}, 1 \mathrm{H}, 7{ }^{\prime}-\mathrm{H}\right), 6.76(\mathrm{~s}, 1 \mathrm{H}, 4-\mathrm{H})$, 6.59-7.63 (m, 18H, arom-H)
4r	1679	$\begin{gathered} 254 \text { (4.57), } 291(4.24), 314 \mathrm{sh} \\ (4.22), 400 \operatorname{sh}(3.06) \end{gathered}$	$\begin{aligned} & 1.02-2.01\left(\mathrm{~m}, 10 \mathrm{H}, 3^{\prime}, 3^{\prime}-\left(\mathrm{CH}_{2}\right)_{5}\right), 5.29(\mathrm{~s}, 1 \mathrm{H}, 6-\mathrm{H}), 5.72(\mathrm{~d}, 1 \mathrm{H}, 2-\mathrm{H}), 5.84\left(\mathrm{~d}, 1 \mathrm{H}, 7 \mathrm{~T}^{-H}\right), 6.88 \\ & (\mathrm{~s}, 1 \mathrm{H}, 4-\mathrm{H}), 6.70-7.52(\mathrm{~m}, 18 \mathrm{H}, \operatorname{arom}-\mathrm{H}) \end{aligned}$
4s	1677	$254 \text { (4.57), } 316(3.98), 420 \mathrm{sh}$	$\begin{aligned} & 1.11-1.91\left(\mathrm{~m}, 10 \mathrm{H}, 3^{\prime}, 3^{\prime}-\left(\mathrm{CH}_{2}\right)_{5}\right), 2.25\left(\mathrm{~s}, 3 \mathrm{H}, 5^{\prime}-\mathrm{CH}_{3}\right), 2.45\left(\mathrm{~s}, 3 \mathrm{H}, 1^{\prime}-\mathrm{CH}_{3}\right), 5.28(\mathrm{~s}, 1 \mathrm{H}, 6-\mathrm{H}), \\ & 5.40\left(\mathrm{~d}, 1 \mathrm{H}, 7^{\prime}-\mathrm{H}\right), 5.96(\mathrm{~s}, 1 \mathrm{H}, 2-\mathrm{H}), 6.80(\mathrm{~s}, 1 \mathrm{H}, 4-\mathrm{H}), 6.64-7.64(\mathrm{~m}, 17 \mathrm{H}, \text { arom-H) } \end{aligned}$
4t	1678	$\begin{gathered} 254(4.65), 313 \operatorname{sh}(4.06), 420 \\ \operatorname{sh}(3.10) \end{gathered}$	$1.21\left(\mathrm{~d}, 3 \mathrm{H}, 5^{\prime}-\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 1.23\left(\mathrm{~d}, 3 \mathrm{H}, 5^{\prime}-\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 1.08-2.02\left(\mathrm{~m}, 10 \mathrm{H}, 3^{\prime}, 3^{\prime}-\left(\mathrm{CH}_{2}\right)_{5}\right), 2.46$ $\left(\mathrm{s}, 3 \mathrm{H}, 1^{\prime}-\mathrm{CH}_{3}\right), 2.81\left(\mathrm{~m}, 1 \mathrm{H}, 5^{\prime}-\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 5.29(\mathrm{~s}, 1 \mathrm{H}, 6-\mathrm{H}), 5.40\left(\mathrm{~d}, 1 \mathrm{H}, 7^{\prime}-\mathrm{H}\right), 5.96(\mathrm{~s}, 1 \mathrm{H}$, $2-\mathrm{H}), 6.80(\mathrm{~s}, 1 \mathrm{H}, 4-\mathrm{H}), 6.68-7.63(\mathrm{~m}, 17 \mathrm{H}$, arom-H)
4u	1678	$254 \text { (4.60), } 313 \text { (4.00), } 417 \mathrm{sh}$	$1.14-2.00\left(\mathrm{~m}, 10 \mathrm{H}, 3^{\prime}, 3^{\prime}-\left(\mathrm{CH}_{2}\right)_{5}\right), 1.29\left(\mathrm{~s}, 9 \mathrm{H}, 5^{\prime}-\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 2.46\left(\mathrm{~s}, 3 \mathrm{H}, 1^{\prime}-\mathrm{CH}_{3}\right), 5.29(\mathrm{~s}, 1 \mathrm{H}, 6-$ $\mathrm{H}), 5.40\left(\mathrm{~d}, 1 \mathrm{H}, 7{ }^{\prime}-\mathrm{H}\right), 5.96(\mathrm{~s}, 1 \mathrm{H}, 2-\mathrm{H}), 6.80(\mathrm{~s}, 1 \mathrm{H}, 4-\mathrm{H}), 6.84-7.64(\mathrm{~m}, 17 \mathrm{H}$, arom -H$)$
4v	1677	$\begin{gathered} 258 \text { (4.70), } 329 \text { sh (4.00), } 424 \\ \text { sh (3.00) } \end{gathered}$	$\begin{aligned} & 1.08-1.93\left(\mathrm{~m}, 10 \mathrm{H}, 3^{\prime}, 3^{\prime}-\left(\mathrm{CH}_{2}\right)_{5}\right), 2.45\left(\mathrm{~s}, 3 \mathrm{H}, 1^{\prime}-\mathrm{CH}_{3}\right), 3.73\left(\mathrm{~s}, 3 \mathrm{H}, 5^{\prime}-\mathrm{CH}_{3}\right), 5.27(\mathrm{~s}, 1 \mathrm{H}, 6-\mathrm{H}), \\ & 5.37\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{7}^{\prime}-\mathrm{H}\right), 5.95(\mathrm{~s}, 1 \mathrm{H}, 2-\mathrm{H}), 6.80(\mathrm{~s}, 1 \mathrm{H}, 6-\mathrm{H}), 6.41-7.63(\mathrm{~m}, 17 \mathrm{H}, \text { arom }-\mathrm{H}) \end{aligned}$
4w	1678	$\begin{gathered} 253 \text { (4.60), } 317(3.99), 407 \mathrm{sh} \\ (3.18) \end{gathered}$	$\begin{aligned} & 1.09-1.94\left(\mathrm{~m}, 10 \mathrm{H}, 3^{\prime}, 3^{\prime}-\left(\mathrm{CH}_{2}\right)_{5}\right), 2.44\left(\mathrm{~s}, 3 \mathrm{H}, 1^{\prime}-\mathrm{CH}_{3}\right), 5.28(\mathrm{~s}, 1 \mathrm{H}, 6-\mathrm{H}), 5.31\left(\mathrm{~m}, 1 \mathrm{H}, 7^{\prime}-\mathrm{H}\right) \text {, } \\ & 5.92(\mathrm{~s}, 1 \mathrm{H}, 2-\mathrm{H}), 6.80(\mathrm{~s}, 1 \mathrm{H}, 4-\mathrm{H}), 6.50-7.63(\mathrm{~m}, 17 \mathrm{H}, \operatorname{arom}-\mathrm{H}) \end{aligned}$
4x	1678	$254 \text { (4.57), } 314 \text { (3.99), } 407 \mathrm{sh}$	$\begin{aligned} & 1.08-1.98\left(\mathrm{~m}, 10 \mathrm{H}, 3^{\prime}, 3 \mathrm{'}^{-}\left(\mathrm{CH}_{2}\right)_{5}\right), 2.43\left(\mathrm{~s}, 3 \mathrm{H}, 1^{\prime}-\mathrm{CH}_{3}\right), 5.29(\mathrm{~s}, 1 \mathrm{H}, 6-\mathrm{H}), 5.35\left(\mathrm{~d}, 1 \mathrm{H}, 7^{\prime}-\mathrm{H}\right) \text {, } \\ & 5.89(\mathrm{~s}, 1 \mathrm{H}, 2-\mathrm{H}), 6.81(\mathrm{~s}, 1 \mathrm{H}, 4-\mathrm{H}), 6.77-7.63(\mathrm{~m}, 17 \mathrm{H}, \operatorname{arom}-\mathrm{H}) \end{aligned}$
4y	1678	$\begin{gathered} 254(4.57), 316 \operatorname{sh}(4.00), 417 \\ \operatorname{sh}(3.15) \end{gathered}$	$\begin{aligned} & 1.09-1.99\left(\mathrm{~m}, 10 \mathrm{H}, 3^{\prime}, 3^{\prime}-\left(\mathrm{CH}_{2}\right)_{5}\right), 2.42\left(\mathrm{~s}, 3 \mathrm{H}, 1^{\prime}-\mathrm{CH}_{3}\right), 5.29(\mathrm{~s}, 1 \mathrm{H}, 6-\mathrm{H}), 5.31\left(\mathrm{~d}, 1 \mathrm{H}, 7^{\prime}-\mathrm{H}\right) \text {, } \\ & 5.88(\mathrm{~s}, 1 \mathrm{H}, 2-\mathrm{H}), 6.79(\mathrm{~s}, 1 \mathrm{H}, 4-\mathrm{H}), 6.91-7.61(\mathrm{~m}, 17 \mathrm{H}, \operatorname{arom}-\mathrm{H}) \end{aligned}$
4z	1678	$\begin{gathered} 256(4.59), 269 \operatorname{sh}(4.52), 313 \\ \operatorname{sh}(4.01), 410 \operatorname{sh}(3.01) \end{gathered}$	$\begin{aligned} & 1.09-1.99\left(\mathrm{~m}, 10 \mathrm{H}, 3^{\prime}, 3^{\prime}-\left(\mathrm{CH}_{2}\right)_{5}\right), 2.43\left(\mathrm{~s}, 3 \mathrm{H}, 1^{\prime}-\mathrm{CH}_{3}\right), 5.25\left(\mathrm{~d}, 1 \mathrm{H}, 7^{\prime}-\mathrm{H}\right), 5.29(\mathrm{~s}, 1 \mathrm{H}, 6-\mathrm{H}), \\ & 5.88(\mathrm{~s}, 1 \mathrm{H}, 2-\mathrm{H}), 6.79(\mathrm{~s}, 1 \mathrm{H}, 4-\mathrm{H}), 7.09-7.61(\mathrm{~m}, 17 \mathrm{H}, \operatorname{arom}-\mathrm{H}) \end{aligned}$
4aa [b],[c]	1678	$\begin{gathered} 254 \text { (4.58), } 313(3.99), 417 \mathrm{sh} \\ (2.95) \end{gathered}$	$\begin{aligned} & 1.32-2.17\left(\mathrm{~m}, 12 \mathrm{H}, 3^{\prime}, 3^{\prime}-\left(\mathrm{CH}_{2}\right)_{6}\right), 2.42\left(\mathrm{~s}, 3 \mathrm{H}, 1^{\prime}-\mathrm{CH}_{3}\right), 5.24\left(\mathrm{~s}, 1 \mathrm{H}, 6^{\prime \prime}-\mathrm{H}\right), 5.50\left(\mathrm{~d}, 1 \mathrm{H}, 7^{\prime}-\mathrm{H}\right), \\ & 6.00\left(\mathrm{~s}, 1 \mathrm{H}, 2^{\prime \prime}-\mathrm{H}\right), 6.83\left(\mathrm{~s}, 1 \mathrm{H}, 4^{\prime \prime}-\mathrm{H}\right), 6.54-7.62(\mathrm{~m}, 18 \mathrm{H}, \operatorname{arom}-\mathrm{H}) \end{aligned}$
$\mathbf{4 b b}$ [b], [c]	1678	$\begin{gathered} 253 \text { (4.62), } 313 \text { sh (4.04), } 410 \\ \operatorname{sh}(3.00) \end{gathered}$	$\begin{aligned} & 2.47\left(\mathrm{~s}, 3 \mathrm{H}, 1^{\prime}-\mathrm{CH}_{3}\right), 2.59\left(\mathrm{~d}, \mathrm{~J}=10.0 \mathrm{~Hz}, 1 \mathrm{H}, 3^{\prime}, 3^{\prime}-\left(\mathrm{CH}_{2}\right)_{2} \mathrm{C}_{6} \mathrm{H}_{4}\right), 3.21(\mathrm{~d}, \mathrm{~J}=10.2 \mathrm{~Hz}, 1 \mathrm{H}, \\ & \left.3^{\prime}, 3^{\prime}-\left(\mathrm{CH}_{2}\right)_{2} \mathrm{C}_{6} \mathrm{H}_{4}\right), 3.61\left(\mathrm{~d}, \mathrm{~J}=10.0 \mathrm{~Hz}, 1 \mathrm{H}, 3^{\prime}, 3^{\prime}-\left(\mathrm{CH}_{2}\right)_{2} \mathrm{C}_{6} \mathrm{H}_{4}\right), 3.64\left(\mathrm{~d}, \mathrm{~J}=10.2 \mathrm{~Hz}, 1 \mathrm{H}, 3^{\prime}, 3^{\prime}-\right. \\ & \left.\left(\mathrm{CH}_{2}\right)_{2} \mathrm{C}_{6} \mathrm{H}_{4}\right), 2.47\left(\mathrm{~s}, 3 \mathrm{H}, 1^{\prime}-\mathrm{CH}_{3}\right), 5.39(\mathrm{~s}, 1 \mathrm{H}, 6-\mathrm{H}), 5.60\left(\mathrm{~d}, 1 \mathrm{H}, 77^{\prime}-\mathrm{H}\right), 5.98(\mathrm{~s}, 1 \mathrm{H}, 2-\mathrm{H}), 6.79 \\ & (\mathrm{~s}, 1 \mathrm{H}, 4-\mathrm{H}), 6.35-7.57(\mathrm{~m}, 22 \mathrm{H}, \text { arom-H}) \end{aligned}$

Table 2 (Continued)

Compound	$\begin{gathered} \mathrm{IR}(\mathrm{KBr}) \\ \left(\mathrm{cm}^{-1}\right) \\ \mathrm{CO} \end{gathered}$	$\begin{gathered} \mathrm{UV}\left(\mathrm{CH}_{3} \mathrm{CN}\right) \\ \lambda_{\max }(\mathrm{nm}) \\ (\log \varepsilon) \end{gathered}$	${ }^{1} \mathrm{H}-\mathrm{NMR}$ (deuteriochloroform) $[\mathrm{a}]$ $\delta(\mathrm{ppm})$
4cc [b], [c]	1678	$\begin{gathered} 254(4.70), 314 \operatorname{sh}(4.02), 400 \\ \operatorname{sh}(2.95) \end{gathered}$	$\begin{aligned} & 2.51\left(\mathrm{~s}, 3 \mathrm{H}, 1^{\prime}-\mathrm{CH}_{3}\right), 5.39(\mathrm{~s}, 1 \mathrm{H}, 6-\mathrm{H}), 5.55(\mathrm{~s}, 1 \mathrm{H}, 2-\mathrm{H}), 6.13(\mathrm{~s}, 1 \mathrm{H}, 4-\mathrm{H}), 6.22\left(\mathrm{~d}, 1 \mathrm{H}, 7^{\prime}-\mathrm{H}\right) \text {, } \\ & 6.51-7.98(\mathrm{~m}, 26 \mathrm{H}, \text { arom-H) } \end{aligned}$
4dd	1678	$\begin{gathered} 254(4.58), 313(3.99), 417 \mathrm{sh} \\ (2.95) \end{gathered}$	$1.59\left(\mathrm{~d}, 1 \mathrm{H}, 3^{\prime}, 3^{\prime}-\left(\mathrm{CH}_{2} \mathrm{CH}_{2}\right)_{2} \mathrm{O}\right), 1.86\left(\mathrm{~d}, 1 \mathrm{H}, 3^{\prime}, 3^{\prime}-\left(\mathrm{CH}_{2} \mathrm{CH}_{2}\right)_{2} \mathrm{O}\right), 2.10-2.39\left(\mathrm{~m}, 2 \mathrm{H}, 3^{\prime}, 3^{\prime}-\right.$ $\left.\left(\mathrm{CH}_{2} \mathrm{CH}_{2}\right)_{2} \mathrm{O}\right), 2.47\left(\mathrm{~s}, 3 \mathrm{H}, 1^{\prime}-\mathrm{CH}_{3}\right), 3.43-4.11\left(\mathrm{~m}, 4 \mathrm{H}, 3^{\prime}, 3^{\prime}-\left(\mathrm{CH}_{2} \mathrm{CH}_{2}\right)_{2} \mathrm{O}\right), 5.27(\mathrm{~s}, 1 \mathrm{H}, 6-\mathrm{H})$, $5.54\left(\mathrm{~d}, 1 \mathrm{H}, 7{ }^{\prime}-\mathrm{H}\right), 5.92(\mathrm{~s}, 1 \mathrm{H}, 2-\mathrm{H}), 6.83(\mathrm{~s}, 1 \mathrm{H}, 4-\mathrm{H}), 6.57-7.63(\mathrm{~m}, 18 \mathrm{H}$, arom-H)
7	1677	$\begin{gathered} 218 \operatorname{sh}(4.63), 257(4.82), 304 \\ \operatorname{sh}(4.20), 315(4.26), 397 \mathrm{sh} \\ (3.64) \end{gathered}$	$\begin{aligned} & 1.38-2.98\left(\mathrm{~m}, 10 \mathrm{H}, \mathrm{1}^{\prime}, 1^{\prime}-\left(\mathrm{CH}_{2}\right)_{5}\right), 2.60\left(\mathrm{~s}, 3 \mathrm{H}, 3^{\prime}-\mathrm{CH}_{3}\right), 5.58(\mathrm{~s}, 1 \mathrm{H}, 6-\mathrm{H}), 5.82\left(\mathrm{~d}, 1 \mathrm{H}, 4^{\prime}-\mathrm{H}\right), \\ & 6.19(\mathrm{~s}, 1 \mathrm{H}, 2-\mathrm{H}), 6.92(\mathrm{~s}, 1 \mathrm{H}, 4-\mathrm{H}), 7.03-8.12(\mathrm{~m}, 20 \mathrm{H}, \operatorname{arom}-\mathrm{H}) \end{aligned}$
10	1677	$\begin{gathered} 254(4.68), 325(4.01), 350 \mathrm{sh} \\ (3.98) \end{gathered}$	$\begin{aligned} & 1.13-1.96\left(\mathrm{~m}, 10 \mathrm{H}, 3^{\prime}, 33^{\prime}-\left(\mathrm{CH}_{2}\right)_{5}\right), 3.10\left(\mathrm{~s}, 3 \mathrm{H}, 1^{\prime}-\mathrm{CH}_{3}\right), 5.23(\mathrm{~s}, 1 \mathrm{H}, 6-\mathrm{H}), 6.22(\mathrm{~s}, 1 \mathrm{H}, 2-\mathrm{H}) \text {, } \\ & 6.81(\mathrm{~s}, 1 \mathrm{H}, 4-\mathrm{H}), 6.63-7.67(\mathrm{~m}, 21 \mathrm{H}, \text { arom-H) } \end{aligned}$

[a] 2-H, $2^{\prime \prime}-\mathrm{H}, 4-\mathrm{H}, 4^{\prime}-\mathrm{H}, 4{ }^{\prime \prime}-\mathrm{H}, 6-\mathrm{H}, 6^{\prime \prime}-\mathrm{H}$ and $7^{\prime}-\mathrm{H}$ denote the protons in 2-, 2"-, 4-, 4'-, 4'-, 6-, 6"- and 7'-position, respectively, and arom-H the protons bonded to the benzene rings. [b] ${ }^{13} \mathrm{C} \mathrm{nmr}$ (deuteriochloroform) 4a 21.4, 22.4, 28.6, $33.8\left(3^{\prime}, 3^{\prime}-\left(\mathrm{CH}_{2}\right)_{4}\right), 29.2\left(1^{\prime}-\mathrm{CH}_{3}\right), 45.2(\mathrm{C}-6), 64.2\left(\mathrm{C}-3^{\prime}\right), 75.2$ (C-1), 103.5, 114.4, 121.0, 121.5, 122.2, 123.5, 124.1, 125.9, 126.3, 126.5, 126.6, 126.7, 130.7, 134.3, 134.5, 136.9, 137.0, 137.6, 138.3 , 146.9 (olefinic and aromatic carbons), $195.3(6-\mathrm{COPh}), 4 \mathbf{j} 19.8,21.8,24.0,27.8,31.0\left(3^{\prime}, 3^{\prime}-\left(\mathrm{CH}_{2}\right)_{5}\right), 29.5\left(1^{\prime}-\mathrm{CH}_{3}\right), 43.6(\mathrm{C}-6), 56.8\left(\mathrm{C}-3^{\prime}\right), 77.0(\mathrm{C}-1), 104.0,114.0$, $121.2,122.5,123.5,124.3,124.6,125.8,125.9,126.0,126.5,126.7,126.8,130.8,132.7,134.2,137.1,137.2,137.9,138.6,147.6$ (olefinic and aromatic carbons), 195.8 (6-COPh), 4aа 21.0, 22.2, 29.5, 30.0, 30.2, $33.0\left(3^{\prime}, 3{ }^{\prime}-\left(\mathrm{CH}_{2}\right)_{6}\right), 29.2\left(1^{\prime}-\mathrm{CH}_{3}\right), 44.9\left(\mathrm{C}-6{ }^{\prime \prime}\right), 58.3\left(\mathrm{C}-3^{\prime}\right), 77.2\left(\mathrm{C}-1^{\prime \prime}\right), 103.4,103.9,114.3$, $117.7,121.1,121.9,122.9,123.1,124.0,125.8,126.0,126.3,126.6,126.7,130.7,134.2,134.8,136.5,137.1,137.5,138.4,146.6$ (olefinic and aromatic carbons), $195.0\left(6^{\prime \prime}-\mathrm{COPh}\right), 4 b b 29.1\left(1^{\prime}-\mathrm{CH}_{3}\right), 36.7,40.5\left(3^{\prime}, 3^{\prime}-\left(\mathrm{CH}_{2}\right)_{2} \mathrm{C}_{6} \mathrm{H}_{4}\right), 45.0(\mathrm{C}-6), 63.3\left(\mathrm{C}-3^{\prime}\right), 74.7(\mathrm{C}-1), 103.7,114.6,120.3,121.0,121.6$, $122.7,123.0,123.4,124.1,124.4,124.6,125.9,126.0,126.2,126.4,126.5,126.7,130.9,133.6,134.3,136.7,136.9,138.0,138.2,139.5,140.2,146.7$ (olefinic and aromatic carbons), 194.9 (6-COPh), 4cc $32.1\left(1^{\prime}-\mathrm{CH}_{3}\right), 47.1$ (C-6), 69.3 (C-3'), 81.3 (C-1), 106.3, 116.4, 117.5, 118.1, 120.6, 121.4, 122.3, $123.0,123.5,123.6,124.1,124.3,124.9,125.3,125.5,125.8,125.9,126.3,126.6,126.8,126.9,130.0,131.0,135.4,135.5,136.7,138.0,138.7,138.8$, $139.1,144.8,145.3,150.4$ (olefinic and aromatic carbons), 194.9 (6-COPh), [c] Mass spectra: $(70 \mathrm{eV}), \mathrm{m} / \mathrm{z}(\%) 4 \mathrm{a} 507(58)\left[\mathrm{M}^{+}\right], 402(80)\left[\mathrm{M}^{+}-\mathrm{PhCO}\right.$, 105 (46) [$\left.\mathrm{PhCO}^{+}\right], 91$ (100), 77 (32) $\left[\mathrm{Ph}^{+}\right], 4 \mathrm{j} 521$ (100) [$\left.\mathrm{M}^{+}\right], 416$ (39) [$\left.\mathrm{M}^{+}-\mathrm{PhCO}\right], 105$ (63) [$\left.\mathrm{PhCO}^{+}\right], 77(55)\left[\mathrm{Ph}^{+}\right]$, 4aa $535(34)\left[\mathrm{M}^{+}\right], 430(31)$ $\left[\mathrm{M}^{+}-\mathrm{PhCO}\right], 91(100), 4 \mathrm{bb} 555(43)\left[\mathrm{M}^{+}\right], 450(58)\left[\mathrm{M}^{+}-\mathrm{PhCO}\right], 306(100), 105(42)\left[\mathrm{PhCO}^{+}\right], 77(29)\left[\mathrm{Ph}^{+}\right], 4 \mathbf{c c} 604(80)\left[\mathrm{M}^{+}\right], 499(69)\left[\mathrm{M}^{+}-\mathrm{PhCO}\right]$, 105 (100) [$\left.\mathrm{PhCO}^{+}\right], 77$ (40) $\left[\mathrm{Ph}^{+}\right]$.

One may assume that in the course of the pyrylium ring transformations the cation of the spiroindolium salts 2,5 and $\mathbf{8}$ is deprotonated to the corresponding methyleneindoline $\mathbf{3}, 6$ and 9 , respectively, acting as carbon nucleophile of the enamine type as already discussed for related reactions of the salts 1 with other methyleneindolines [1,5,7]. The $2 H$-pyran derivative formed [8] as the result of the attack at the preferred position 2 of 1 [3] is then ring opened by an electrocyclic reaction to a merocyanine which recyclizes finally by another electrocyclic process to the dispiro compounds $\mathbf{4}, \mathbf{7}$ and $\mathbf{1 0}$ [9]. Since the cyclohexadiene moiety is built up from four carbon atoms of the pyrylium cation and two C -atoms of the spiromethyleneindoline by connection of the former positions 2 and 4 of $\mathbf{1}$ by a C_{2}-chain the reaction can be classified as a 2,5 $\left[\mathrm{C}_{4}+\mathrm{C}_{2}\right]$ transformation [10].

The results of elemental analyses and spectroscopic data are in agreement with the structure proposed for the dispiro compounds $\mathbf{4 / 7 / 1 0}$. In the ${ }^{1} \mathrm{H} n m r$ spectra the broad multiplet at $0.99-2.34 \mathrm{ppm}$ can be attributed to the protons of the spiro-fused cyclopentane, cyclohexane and cycloheptane, respectively, present in 4a-aa, 7 and $\mathbf{1 0}$. Cooling a solution of $\mathbf{4 a}, \mathbf{4 j}$ and $\mathbf{4 a a}$ in deuterated methylenechloride to -90° does not lead to sharp signals of these protons indicating a high conformational flexibility of the cycloalkane moiety even at low temperatures. The protons of the N-methyl group of $\mathbf{4 a - o}$ and $\mathbf{4 s}$-dd show the expected singlet at $2.42-3.10 \mathrm{ppm}$. The aromatic proton
adjacent to the nitrogen causes a doublet at 5.29-6.22 ppm. This signal is significantly shifted upfield in comparison to the multiplet of the other protons bonded at the benzene rings (6.35-8.12 ppm) by the known shielding effect of the NR-group ($\mathrm{R}=$ alkyl) [11]. The signals of the protons of the cyclohexadiene part of the molecule can be located as a singlet at $5.22-5.58 \mathrm{ppm}$ (methine proton) and two singlets at $5.55-6.98 \mathrm{ppm}$ (olefinic protons). The presence of the carbonyl group is documented in the ir spectra by a strong $\mathrm{C}=\mathrm{O}$-vibration band at $1675-1679 \mathrm{~cm}^{-1}$ [12] and, as shown for $\mathbf{4 a}, \mathbf{4 j}$ and $\mathbf{4 a a - c c}$, by the typical signal of the carbonyl carbon in the ${ }^{13} \mathrm{C} \mathrm{nmr}$ spectra around 195 ppm. Finally, the uv-vis spectra show an absorption at 251-263 nm of high intensity accompanied by up to three smaller bands at longer wavelengths.

All spectroscopic parameters determined for the dispiro compounds $\mathbf{4}, \mathbf{7}$ and $\mathbf{1 0}$ are comparable to those obtained for the structurally related diastereomerically pure aroyl-spiro[cyclohexadiene-indolines] with two identical or different substituents at $\mathrm{C}-3^{\prime}[5,7]$ as well as for their benzofused analogues [1]. The structure of these compounds were additionally confirmed by X-ray structure determinations that clearly show a trans configuration of the more bulky substituents at the cyclohexadiene ring. Hence, it can be concluded that, as a result of the ring transformations $\mathbf{1}+\mathbf{3} \rightarrow \mathbf{4}$ and $\mathbf{1 a}+\mathbf{6 / 9} \rightarrow \mathbf{7 / 1 0}$, the diastereomer is formed, where ArCO and $\mathrm{CX}(\mathrm{X}=$ spirocycle $)$ also have a trans configuration.

EXPERIMENTAL

The melting points were measured on a Boëtius hot stage apparatus. The ${ }^{1} \mathrm{H} \mathrm{nmr}$ and ${ }^{13} \mathrm{C} \mathrm{nmr}$ spectra were recorded on a Varian Gemini 200 spectrometer ($\left.{ }^{1} \mathrm{H}: 199.975 \mathrm{MHz},{ }^{13} \mathrm{C}: 50.289 \mathrm{MHz}\right)$ and on a Varian Gemini 2000 spectrometer $\left({ }^{1} \mathrm{H}: 200.041 \mathrm{MHz},{ }^{13} \mathrm{C}\right.$: 50.305 MHz) in deuteriochloroform or dimethyl- d_{6} sulfoxide at 25° with hexamethyl disiloxane as internal standard, ir spectra were obtained on a ATI Mattson Genesis FTIR spectrophotometer (in potassium bromide) and uv-vis spectra on a Zeiss M 40 instrument (acetonitrile, 25°). Mass spectra were determined on a Varian MAT 212 spectrometer (70 eV , electron impact). The pyrylium perchlorates 1a [13], 1b [14], 1c [15], 1d,f [16], 1e [17], 1g-i [18], N-ethyl-N-phenylhydrazine [19], N-isopropyl- N-phenylhydrazine [19], 1-naphthylhydrazine [20], 2-naphthylhydrazine [20], 1-cylopentylethanone [21], 1-cycloheptylethanone [22], 1-(9H-flu-oren-9-yl)ethanone [23] and 1-(tetrahydropyran-4-yl)ethanone [24] were synthesized according to literature procedures. The preparation of the spiroindolium perchlorates $\mathbf{2 b}$ and $\mathbf{2 0}$ was reported in a previous paper [25]. N -Methyl- N -phenylhydrazine, N, N-diphenylhydrazine hydrochloride, 4-methylphenylhydrazine hydrochloride, 4-fluorophenylhydrazine hydrochloride, 4-chlorophenylhydrazine hydrochloride and 4-bromophenylhydrazine hydrochloride were purchased from Aldrich, 4-isopropylphenylhydrazine hydrochloride and 4-methoxyphenylhydrazine hydrochloride from Acros, 4-tert-butylphenylhydrazine hydrochloride as well as 4-iodophenylhydrazine from Lancaster and 1-cyclohexylethanone from Fluka.

Preparation of the Starting Spiroindolium Perchlorates 2 from Hydrazines and Ketones
a) By an One-pot Procedure.

The spiroindolium perchlorates $\mathbf{2 a}, \mathbf{2 c - e}, \mathbf{2 n}, \mathbf{2 p}$ and $\mathbf{2 q}$ were obtained from N-substituted N-phenylhydrazines or their hydrochlorides, α-branched ketones and perchloric acid in boiling ethanol applying a previously reported procedure [25] which combines the hydrazone formation and the Fischer indolization [26] to an one-pot synthesis.

1',2'-Dimethylspiro[cyclopentane-1,3'-indolium] Perchlorate (2a).

This compound was obtained from N-methyl- N-phenylhydrazine, 1-cyclopentylethanone and perchloric acid in 61% yield, mp 210-211 ${ }^{\circ}$ (acetonitrile/ether); ${ }^{1} \mathrm{H} \mathrm{nmr}$ (dimethyl- d_{6} sulfoxide): $\delta 1.89-2.36\left(\mathrm{~m}, 8 \mathrm{H}, 3^{\prime}, 3^{\prime}-\left(\mathrm{CH}_{2}\right)_{4}\right), 2.78\left(\mathrm{~s}, 3 \mathrm{H}, 2^{\prime}-\mathrm{CH}_{3}\right), 3.99$ (s, $3 \mathrm{H}, 1^{\prime}-\mathrm{CH}_{3}$), 7.60-7.92 (m, 4 H , arom-H).

Anal. Calcd. for $\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{ClNO}_{4}: \mathrm{C}, 56.10 ; \mathrm{H}, 6.05 ; \mathrm{N}, 4.67$. Found: C, 56.20; H, 6.10; N, 4.51 .

1'-Ethyl-2'-methylspiro[cyclohexane-1,3'-indolium] Perchlorate (2c).
This compound was obtained from N-ethyl- N-phenylhydrazine, 1-cyclohexylethanone and perchloric acid in 74% yield, mp 188$189^{\circ}$ (acetonitrile/ether); ${ }^{1} \mathrm{H} \mathrm{nmr}$ (dimethyl-d ${ }_{6}$ sulfoxide): $\delta 1.40$ (t, 3H, 1'- $\left.\mathrm{CH}_{2} \mathrm{CH}_{3}\right), 1.44-2.04\left(\mathrm{~m}, 10 \mathrm{H}, 3^{\prime}, 3^{\prime}-\left(\mathrm{CH}_{2}\right)_{5}\right), 2.81(\mathrm{~s}, 3 \mathrm{H}$, $\left.2^{\prime}-\mathrm{CH}_{3}\right), 4.46\left(\mathrm{q}, 2 \mathrm{H}, 1^{\prime}-\mathrm{CH}_{2} \mathrm{CH}_{3}\right), 7.52-8.08(\mathrm{~m}, 4 \mathrm{H}$, arom -H$)$.

Anal. Calcd. for $\mathrm{C}_{16} \mathrm{H}_{22} \mathrm{ClNO}_{4}: \mathrm{C}, 58.62 ; \mathrm{H}, 6.76 ; \mathrm{N}, 4.27$. Found: C, 58.70; H, 6.71; N, 4.31 .

1'-Isopropyl-2'-methylspiro[cyclohexane-1,3'-indolium] Perchlorate (2d).

This compound was obtained from N-isopropyl- N-phenylhydrazine, 1-cyclohexylethanone and perchloric acid in 68% yield,
mp 215-216 ${ }^{\circ}$ (acetonitrile/ether); ${ }^{1} \mathrm{H}$ nmr (dimethyl-d ${ }_{6}$ sulfoxide): $\delta 1.67\left(\mathrm{~d}, 6 \mathrm{H}, 1^{\prime}-\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 1.33-2.05\left(\mathrm{~m}, 10 \mathrm{H}, 3^{\prime}, 3^{\prime}-\right.$ $\left.\left(\mathrm{CH}_{2}\right)_{5}\right), 2.84\left(\mathrm{~s}, 3 \mathrm{H}, 2^{\prime}-\mathrm{CH}_{3}\right), 5.11\left(\mathrm{~m}, 1 \mathrm{H}, 1^{\prime}-\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 7.53-$ 8.11 (m, 4H, arom-H).

Anal. Calcd. for $\mathrm{C}_{17} \mathrm{H}_{24} \mathrm{ClNO}_{4}$: C, $59.73 ; \mathrm{H}, 7.08 ; \mathrm{N}, 4.10$. Found: C, 59.80; H, 7.20; N, 4.10.

2'-Methyl-1'-phenylspiro[cyclohexane-1,3'-indolium] Perchlorate (2e) [27].

This compound was obtained from N, N-diphenylhydrazine hydrochloride, 1-cyclohexylethanone and perchloric acid in 61% yield, mp 221-222 ${ }^{\circ}$ (acetonitrile/ether); ${ }^{1} \mathrm{H} \mathrm{nmr}$ (dimethyl- d_{6} sulfoxide): $\delta 1.52-2.09\left(\mathrm{~m}, 10 \mathrm{H}, 3^{\prime}, 3^{\prime}-\left(\mathrm{CH}_{2}\right)_{5}\right), 2.64\left(\mathrm{~s}, 3 \mathrm{H}, 2^{\prime}-\mathrm{CH}_{3}\right)$, 7.05-8.17 (m, 9H, arom-H).

Anal. Calcd. for $\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{ClNO}_{4}: \mathrm{C}, 63.91 ; \mathrm{H}, 5.90 ; \mathrm{N}, 3.73$. Found: C, 64.00; H, 5.92; N, 3.80.

1',2'-Dimethylspiro[cycloheptane-1,3'-indolium] Perchlorate (2n).
This compound was obtained from N-methyl- N-phenylhydrazine, 1-cycloheptylethanone and perchloric acid in 35% yield, $\mathrm{mp} 202-203^{\circ}$ (acetonitrile/ether); ${ }^{1} \mathrm{H} \mathrm{nmr}$ (dimethyl- d_{6} sulfoxide): $\delta 1.54-2.09\left(\mathrm{~m}, 12 \mathrm{H}, 3^{\prime}, 3^{\prime}-\left(\mathrm{CH}_{2}\right)_{6}\right), 2.75\left(\mathrm{~s}, 3 \mathrm{H}, 2^{\prime}-\mathrm{CH}_{3}\right)$, $3.89\left(\mathrm{~s}, 3 \mathrm{H}, 1^{\prime}-\mathrm{CH}_{3}\right), 7.52-7.91(\mathrm{~m}, 4 \mathrm{H}$, arom -H$)$.

Anal. Calcd. for $\mathrm{C}_{16} \mathrm{H}_{22} \mathrm{ClNO}_{4}$: C, $58.62 ; \mathrm{H}, 6.76 ; \mathrm{N}, 4.27$. Found: C, 58.60; H, 6.95; N, 4.30.

1',2'-Dimethylspiro[fluorene-9,3'-indolium] Perchlorate (2p).

This compound was obtained from N-methyl- N-phenylhydrazine, 1-(9H-fluoren-9-yl)ethanone and perchloric acid in 54% yield, $\mathrm{mp} 201-202^{\circ}$ (acetonitrile/ether); ${ }^{1} \mathrm{H} \mathrm{nmr}$ (dimethyl- d_{6} sulfoxide): $\delta 2.14\left(\mathrm{~s}, 3 \mathrm{H}, 2^{\prime}-\mathrm{CH}_{3}\right), 4.20\left(\mathrm{~s}, 3 \mathrm{H}, 1^{\prime}-\mathrm{CH}_{3}\right), 6.88-8.13$ $(\mathrm{m}, 12 \mathrm{H}$, arom-H).

Anal. Calcd. for $\mathrm{C}_{22} \mathrm{H}_{18} \mathrm{ClNO}_{4}: \mathrm{C}, 66.75 ; \mathrm{H}, 4.58 ; \mathrm{N}, 3.54$. Found: C, 66.80; H, 4.51; N, 3.60.

1,2-Dimethylspiro[indolium-3,4'-tetrahydrofuran] Perchlorate (2q).

This compound was obtained from N-methyl- N-phenylhydrazine, 1-(tetrahydropyran-4-yl)ethanone and perchloric acid in 40% yield, $\mathrm{mp} 238-239^{\circ}$ (acetonitrile/ether); ${ }^{1} \mathrm{H} \mathrm{nmr}$ (dimethyld_{6} sulfoxide): $\delta 1.41\left(\mathrm{~d}, 2 \mathrm{H}, 3,3-\left(\mathrm{CH}_{2} \mathrm{CH}_{2}\right)_{2} \mathrm{O}\right), 2.20(\mathrm{~m}, 2 \mathrm{H}, 3,3-$ $\left.\left(\mathrm{CH}_{2} \mathrm{CH}_{2}\right)_{2} \mathrm{O}\right), 2.75\left(\mathrm{~s}, 3 \mathrm{H}, 2-\mathrm{CH}_{3}\right), 3.91\left(\mathrm{~s}, 3 \mathrm{H}, 1-\mathrm{CH}_{3}\right), 3.95(\mathrm{~m}$, $\left.4 \mathrm{H}, 3,3-\left(\mathrm{CH}_{2} \mathrm{CH}_{2}\right)_{2} \mathrm{O}\right), 7.51-8.28(\mathrm{~m}, 4 \mathrm{H}$, arom- H$)$.

Anal. Calcd. for $\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{ClNO}_{5}$: C, 53.26; $\mathrm{H}, 5.75 ; \mathrm{N}, 4.44$. Found: C, 58.30; H, 5.80; N, 4.50 .
b) Via Spiroindoles.

The spiroindolium perchlorates $\mathbf{2 f}-\mathbf{m}, 5$ and $\mathbf{8}$ were prepared from N-arylhydrazines or their hydrochlorides and α-branched ketones by the following two step procedure consisting of a Fischer type reaction [26] to spiroindoles and a subsequent methylation with dimethyl sulfate.
Synthesis of the Spiroindoles.
To 20 ml of absolute ethanol, 20 mmoles N-arylhydrazine or its hydrochloride, 2.52 g (20 mmoles) 1-cyclohexylethanone and perchloric acid $(5.74 \mathrm{~g}, 40 \mathrm{mmoles}$, if the free hydrazine is used, $2.87 \mathrm{~g}, 20$ mmoles, in the case of its hydrochloride) were added. The reaction mixture was then magnetically stirred under reflux for two hours, cooled to room temperature and poured into 100 ml of a stirred solution
of sodium hydroxide in water (10%). After transfer into a separatory funnel, the product was extracted three times with chloroform $(30 \mathrm{ml})$, the combined organic layers were washed two times with water (50 ml), dried over anhydrous sodium sulfate and the solvent was removed in vacuo. The resulting crude spiroindoles were used without further purification for the next reaction step.

Synthesis of Spiroindolium Perchlorates.
The methylation of the spiroindoles was performed in toluene with dimethyl sulfate followed by precipitation of the spiroindolium perchlorates with perchloric acid from an ethanol solution as recently reported [1].

1',2',5'-Trimethylspiro[cyclohexane-1,3'-indolium] Perchlorate

 (2f).4-Methylphenylhydrazine hydrochloride was reacted with 1cyclohexylethanone to give $2^{\prime}, 5^{\prime}$-dimethylspiro[cyclohexane-1,3'-indole] (yield 95%), which was methylated to $\mathbf{2 f}$, yield 26%, mp 249-250 ${ }^{\circ}$ (acetonitrile/ether); ${ }^{1} \mathrm{H} \mathrm{nmr}$ (dimethyl-d ${ }_{6}$ sulfoxide): $\delta 1.32-1.98\left(\mathrm{~m}, 10 \mathrm{H}, 3^{\prime}, 3^{\prime}-\left(\mathrm{CH}_{2}\right)_{5}\right), 2.42\left(\mathrm{~s}, 3 \mathrm{H}, 5^{\prime}-\mathrm{CH}_{3}\right)$, $2.69\left(\mathrm{~s}, 3 \mathrm{H}, 2^{\prime}-\mathrm{CH}_{3}\right), 3.88\left(\mathrm{~s}, 3 \mathrm{H}, 1^{\prime}-\mathrm{CH}_{3}\right), 7.40-7.85(\mathrm{~m}, 3 \mathrm{H}$, arom-H).

Anal. Calcd. for $\mathrm{C}_{16} \mathrm{H}_{22} \mathrm{ClNO}_{4}: \mathrm{C}, 58.62 ; \mathrm{H}, 7.25 ; \mathrm{N}, 4.27$. Found: C, 58.67; H, 7.10; N, 4.30.

5'-Isopropyl-1',2'-dimethylspiro[cyclohexane-1,3'-indolium] Perchlorate ($\mathbf{2 g}$).

4-Isopropylphenylhydrazine was reacted with 1-cyclohexylethanone to give 5'-isopropyl-2'-methylspiro[cyclohexane-1,3'-indole] (yield 96%), which was methylated to $\mathbf{2 g}$, yield 39%, mp 186-187 ${ }^{\circ}$ (acetonitrile/ether); ${ }^{1} \mathrm{H} \mathrm{nmr}$ (dimethyl- d_{6} sulfoxide): $\delta 1.21\left(\mathrm{~d}, 6 \mathrm{H}, 5{ }^{\prime}-\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 1.34-2.00\left(\mathrm{~m}, 10 \mathrm{H}, 33^{\prime}, 3^{\prime}-\right.$ $\left.\left(\mathrm{CH}_{2}\right)_{5}\right), 2.71\left(\mathrm{~s}, 3 \mathrm{H}, 2^{\prime}-\mathrm{CH}_{3}\right), 3.06\left(\mathrm{~m}, 1 \mathrm{H}, 5^{\prime}-\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 3.90$ ($\mathrm{s}, 3 \mathrm{H}, \mathrm{l}^{\prime}-\mathrm{CH}_{3}$), 7.48-7.82 (m, 3 H , arom-H).

Anal. Calcd. for $\mathrm{C}_{18} \mathrm{H}_{26} \mathrm{ClNO}_{4}$: C, $60.75 ; \mathrm{H}, 7.36 ; \mathrm{N}, 3.94$. Found: C, 60.80; H, 7.31; N, 3.80.

5'-tert-Butyl-1',2'-dimethylspiro[cyclohexane-1,3'-indolium] Perchlorate (2h).

4-tert-Butylphenylhydrazine hydrochloride was reacted with 1-cyclohexylehanone to give 5'-tert-butyl-2'-methylspiro-[cyclohexane-1,3'-indole] (yield 94%), which was methylated to $\mathbf{2 h}$, yield 43%, mp 267-268 ${ }^{\circ}$ (acetonitrile/ether); ${ }^{1} \mathrm{H} \mathrm{nmr}$ (dimethyl-d ${ }_{6}$ sulfoxide): $\delta 1.31$ (s, $\left.9 \mathrm{H}, 5{ }^{\prime}-\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 1.33-2.01$ $\left(\mathrm{m}, 10 \mathrm{H}, 3^{\prime}, 3^{\prime}-\left(\mathrm{CH}_{2}\right)_{5}\right), 2.72\left(\mathrm{~s}, 3 \mathrm{H}, 2^{\prime}-\mathrm{CH}_{3}\right), 3.90\left(\mathrm{~s}, 3 \mathrm{H}, 1^{\prime}-\mathrm{CH}_{3}\right)$, 7.62-7.88 (m, 3H, arom-H).

Anal. Calcd. for $\mathrm{C}_{19} \mathrm{H}_{28} \mathrm{ClNO}_{4}$: C, $61.70 ; \mathrm{H}, 7.63 ; \mathrm{N}, 3.79$. Found: C, 61.80; H, 7.50; N, 3.80.
5'-Methoxy-1',2'-dimethylspiro[cyclohexane-1,3'-indolium] Perchlorate (2i).

4-Methoxyphenylhydrazine hydrochloride was reacted with 1cyclohexylethanone to give 5'-methoxy-2'-methylspiro-[cyclohexane-1,3'-indole] (yield 84%), which was methylated to $\mathbf{2 i}$, yield 26%, mp 223-224 ${ }^{\circ}$ (acetonitrile/ether); ${ }^{1} \mathrm{H} \mathrm{nmr}$ (dimethyl- ${ }_{6}$ sulfoxide): $\delta 1.32-1.99\left(\mathrm{~m}, 10 \mathrm{H}, 3^{\prime}, 3^{\prime}-\left(\mathrm{CH}_{2}\right)_{5}\right), 2.65$ $\left(\mathrm{s}, 3 \mathrm{H}, 2^{\prime}-\mathrm{CH}_{3}\right), 3.82\left(\mathrm{~s}, 3 \mathrm{H}, 5^{\prime}-\mathrm{OCH}_{3}\right), 3.86\left(\mathrm{~s}, 3 \mathrm{H}, 1^{\prime}-\mathrm{CH}_{3}\right)$, 7.12-7.81 (m, 3H, arom-H).

Anal. Calcd. for $\mathrm{C}_{16} \mathrm{H}_{22} \mathrm{ClNO}_{5}$: C, $55.90 ; \mathrm{H}, 6.45 ; \mathrm{N}, 4.07$. Found: C, 55.91; H, 6.40; N, 4.01.

5'-Fluoro-1',2'-dimethylspiro[cyclohexane-1,3'-indolium] Perchlorate ($\mathbf{2 j}$).

4-Fluorophenylhydrazine hydrochloride was reacted with 1cyclohexylethanone to give 5'-fluoro-2'-methylspiro-[cyclohexane-1,3'-indole] (yield 85%), which was methylated to $\mathbf{2 j}$, yield 59\%, mp 242-243 ${ }^{\circ}$ (acetonitrile/ether); ${ }^{1} \mathrm{H} \mathrm{nmr}$ (dimethyl- ${ }_{6}$ sulfoxide): $\delta 1.38-2.03\left(\mathrm{~m}, 10 \mathrm{H}, 3^{\prime}, 3^{\prime}-\left(\mathrm{CH}_{2}\right)_{5}\right), 2.72$ (s, 3H, 2'- CH_{3}), $3.92\left(\mathrm{~s}, 3 \mathrm{H}, 1^{\prime}-\mathrm{CH}_{3}\right), 7.42-7.97(\mathrm{~m}, 3 \mathrm{H}$, arom-H).

Anal. Calcd. for $\mathrm{C}_{15} \mathrm{H}_{19} \mathrm{ClFNO}_{4}$: C, $54.30 ; \mathrm{H}, 5.77 ; \mathrm{N}, 4.22$. Found: C, 54.10; H, 5.80; N, 4.21.

5'-Chloro-1',2'-dimethylspiro[cyclohexane-1,3'-indolium] Perchlorate ($\mathbf{2 k}$).

4-Chlorophenylhydrazine hydrochloride was reacted with 1-cyclohexylethanone to give 5'-chloro-2'-methylspiro-[cyclohexane-1,3'-indole] (yield 88%), which was methylated to $\mathbf{2 k}$, yield 61%, mp $185-186^{\circ}$ (dec) (acetonitrile/ether); ${ }^{1} \mathrm{H}$ nmr (dimethyl-d ${ }_{6}$ sulfoxide): $\delta 1.38-2.02\left(\mathrm{~m}, 10 \mathrm{H}, 3^{\prime}, 3^{\prime}-\right.$ $\left.\left(\mathrm{CH}_{2}\right)_{5}\right), 2.74\left(\mathrm{~s}, 3 \mathrm{H}, 2^{\prime}-\mathrm{CH}_{3}\right), 3.91\left(\mathrm{~s}, 3 \mathrm{H}, 1^{\prime}-\mathrm{CH}_{3}\right)$), 7.67-8.08 (m, 3 H , arom-H).

Anal. Calcd. for $\mathrm{C}_{15} \mathrm{H}_{19} \mathrm{Cl}_{2} \mathrm{NO}_{4}$: C, $51.74 ; \mathrm{H}, 5.50 ; \mathrm{N}, 4.02$. Found: C, 51.80; H, 5.38; N, 4.00 .

5'-Bromo-1',2'-dimethylspiro[cyclohexane-1,3'-indolium] Perchlorate (2l).

4-Bromophenylhydrazine hydrochloride was reacted with 1-cyclohexylethanone to give 5'-bromo-2'-methylspiro-[cyclohexane-1,3'-indole] (yield 95\%), which was methylated to 2l, yield 43%, mp 305-306 ${ }^{\circ}$ (dec) (acetonitrile/ether); ${ }^{1} \mathrm{H} \mathrm{nmr}$ (dimethyl- d_{6} sulfoxide): $\delta 1.83-2.01\left(\mathrm{~m}, 10 \mathrm{H}, 3^{\prime}, 3^{\prime}-\left(\mathrm{CH}_{2}\right)_{5}\right), 2.73$ (s, $\left.3 \mathrm{H}, 2^{\prime}-\mathrm{CH}_{3}\right), 3.90\left(\mathrm{~s}, 3 \mathrm{H}, 1^{\prime}-\mathrm{CH}_{3}\right), 7.85-8.19(\mathrm{~m}, 3 \mathrm{H}$, arom-H).

Anal. Calcd. for $\mathrm{C}_{15} \mathrm{H}_{19} \mathrm{BrClNO}_{4}: \mathrm{C}, 45.88 ; \mathrm{H}, 4.88 ; \mathrm{N}, 3.57$. Found: C, 45.80; H, 4.80; N, 3.60.

5'-Iodo-1',2'-dimethylspiro[cyclohexane-1,3'-indolium] Perchlorate (2m).

4-Iodophenylhydrazine was reacted with 1-cyclohexylethanone to give 5'-iodo-2'-methylspiro[cyclohexane-1,3'-indole] (yield 89%), which was methylated to $\mathbf{2 m}$, yield 37%, mp 285$286^{\circ}$ (dec) (acetonitrile/ether); ${ }^{1} \mathrm{H} \mathrm{nmr}$ (dimethyl- d_{6} sulfoxide): δ $1.37-2.02\left(\mathrm{~m}, 10 \mathrm{H}, 3^{\prime}, 3^{\prime}-\left(\mathrm{CH}_{2}\right)_{5}\right), 2.71\left(\mathrm{~s}, 3 \mathrm{H}, 2^{\prime}-\mathrm{CH}_{3}\right), 3.88(\mathrm{~s}$, $3 \mathrm{H}, 1$ ' $-\mathrm{CH}_{3}$), 7.69-8.31 (m, 3 H , arom-H).

Anal. Calcd. for $\mathrm{C}_{15} \mathrm{H}_{19} \mathrm{ClINO}_{4}: \mathrm{C}, 40.98 ; \mathrm{H}, 4.36 ; \mathrm{N}, 3.19$. Found: C, 41.00; H, 4.31; N, 3.20.

2',3'-Dimethylspiro[cyclohexane-1,1'-benzo[e]indolium] Perchlorate (5).

2-Naphthylhydrazine was reacted with 1-cyclohexylethanone to give 2'-methylspiro[cyclohexane-1,1'-benzo[e]indole] (yield 96%), which was methylated to 5 , yield 47%, mp 258-259 ${ }^{\circ}$ (acetonitrile/ether); ${ }^{1} \mathrm{H}$ nmr (dimethyl- d_{6} sulfoxide): $\delta 1.74-1.95$ (m, $\left.10 \mathrm{H}, 1^{\prime}, 1 \mathrm{l}-\left(\mathrm{CH}_{3}\right)_{5}\right), 2.99\left(\mathrm{~s}, 3 \mathrm{H}, 2^{\prime}-\mathrm{CH}_{3}\right), 4.04\left(\mathrm{~s}, 3 \mathrm{H}, 3{ }^{\prime}-\mathrm{CH}_{3}\right)$, 7.65-8.35 (m, 6H, arom-H).

Anal. Calcd. for $\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{ClNO}_{4}: \mathrm{C}, 62.72 ; \mathrm{H}, 6.03 ; \mathrm{N}, 3.85$. Found: C, 62.70; H, 6.00; N, 3.90.
1',2'-Dimethylspiro[cyclohexane-1,3'-benzo[g]indolium] Perchlorate (8).

1-Naphthylhydrazine was reacted with 1-cyclohexylethanone to give 2'-methylspiro[cyclohexane-1,3'-benzo[g]indole] (yield
96%), which was methylated to 8 , yield 5%, mp 254-255 ${ }^{\circ}$ (acetonitrile/ether); ${ }^{1} \mathrm{H} \mathrm{nmr}$ (dimethyl- d_{6} sulfoxide): $\delta 1.40-2.09$ (m , $\left.10 \mathrm{H}, 3^{\prime}, 33^{\prime}-\left(\mathrm{CH}_{2}\right)_{5}\right), 2.83\left(\mathrm{~s}, 3 \mathrm{H}, 3^{\prime}-\mathrm{CH}_{3}\right), 4.40\left(\mathrm{~s}, 3 \mathrm{H}, 1^{\prime}-\mathrm{CH}_{3}\right)$, 7.61-8.73 (m, 6H, arom-H).

Anal. Calcd. for $\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{ClNO}_{4}$: C, $62.72 ; \mathrm{H}, 6.09 ; \mathrm{N}, 3.85$. Found: C, 62.70; H, 6.15; N, 3.95.

Synthesis of the Dispiro Compounds 4, 7 and 10 from 2,4,6Triarylpyrylium Perchlorates 1 and Spiroindolium Perchlorates 2,5 and 8.

General Procedure ($c f$. Tables 1 and 2).
To absolute ethanol (30 ml) 5 mmoles pyrylium perchlorate 1, 5 mmoles spiroindolium perchlorate $\mathbf{2 / 5 / 8}$, triethylamine (1.51 g , 15 mmoles) and acetic acid ($0.60 \mathrm{~g}, 10 \mathrm{mmoles}$) were added. The reaction mixture was then refluxed for two hours. The dispiro compounds $\mathbf{4 / 7 / 1 0}$ formed crystallized in some cases from the hot reaction mixture. Otherwise their crystallization was initiated by cooling. They were filtered by suction, washed with ethanol and recrystallized from ethanol/toluene.

Acknowledgement.
The financial support by the Deutsche Forschungsgemeinschaft is gratefully appreciated.

REFERENCES AND NOTES

[1] Part XX: T. Zimmermann, J. Heterocyclic Chem., 37, 885 (2000).
[2] H. C. van der Plas, J. Heterocyclic Chem., 37, 437 (2000) and references cited therein.
[3a] A. T. Balaban, A. Dinculescu, G. N. Dorofeenko, G. W. Fischer, A. V. Koblik, V. V. Mezheritskii and W. Schroth, Pyrylium Salts. Syntheses, Reactions and Physical Properties, Advances in Heterocyclic Chemistry, Suppl 2, Academic Press, New York, 1982; [b] W. Schroth, W. Dölling and A. T. Balaban, in Houben-Weyl, Vol E7b, R. P. Kreher, ed, Thieme, Stuttgart, 1992, pp 755-1014.
[4] For a recent review on indoles and their derivatives see: H. Döpp, D. Döpp, U. Langer and B. Gerding, in Houben-Weyl, Vol $\mathbf{E 6 b}_{\mathbf{1}} / \mathbf{E 6 b}_{2}$, R. P. Kreher, ed, Thieme, Stuttgart, 1994, pp 546-1354.
[5] T. Zimmermann and M. Pink, J. Prakt. Chem./Chem.-Ztg., 337, 368 (1995).
[6a] O. Brede, L. Goebel and T. Zimmermann, J. Inf. Rec. Mater., 22, 397 (1996); [b] L. Goebel, O. Brede and T. Zimmermann, Radiat. Phys. Chem., 47, 369 (1996); [c] O. Brede, L. Goebel and T. Zimmermann, J. Phys. Chem. A, 101, 4103 (1997); [d] T. Häupl, T. Zimmermann, R. Hermann and O. Brede, Chem. Phys. Lett., 291,

215 (1998); [e] T. Häupl, T. Zimmermann, R. Hermann and O. Brede, J. Phys. Chem. A, 103, 6904 (1999).
[7] T. Zimmermann and U. Abram, J. Heterocyclic Chem., 36, 1223 (1999).
[8] Reviews on 2 H -pyrans: [a] J. Kuthan, Adv. Heterocyclic Chem., 34, 145 (1983); [b] J. Kuthan, P. Sebek and S. Böhm, Adv. Heterocyclic Chem., 62, 20 (1995); [c] K. Ohketa and K.-Y. Akiba, Adv. Heterocyclic Chem., 65, 283 (1996).
[9] For a detailed description of the reaction mechanism and an explanation of the diastereoselectivity $c f$. ref [5].
[10] For the classification of pyrylium ring transformations see ref [3a].
[11] M. Hesse, H. Meier and B. Zeeh, Spektroskopische Methoden in der organischen Chemie, Thieme, Stuttgart, New York, 1997, p 116.
[12] A. Günzler and H. Böck, IR-Spektroskopie, VCH, Weinheim, 1990, p 233.
[13] A. T. Balaban and C. Toma, Tetrahedron, Supplement 7, 1 (1966).
[14] A. Mistr, M. Vavra, J. Skoupy and R. Zahradnik, Collect. Czech. Chem. Commun., 37, 1520 (1972).
[15] R. Wizinger, S. Losinger and P. Ulrich, Helv. Chim. Acta, 39, 5 (1956).
[16] K. Dimroth, C. Reichardt, T. Siepmann and F. Bohlmann, Liebigs Ann. Chem., 661, 1 (1963).
[17] G. N. Dorofeenko, S. V. Krivun and V. V. Mezheritskii, Zh. Obshch. Khim., 35, 632 (1963).
[18] G. W. Fischer and M. Herrmann, J. Prakt. Chem., 326, 287 (1984).
[19] R. F. Smith, L. A. Olson, W. J. Ryan, K. J. Coffman, J. M. Galante, F. S. Wojdan, P. A. Mallardi and T. P. Eckert, Synth. Comтип., 16, 585 (1986).
[20] E. Fischer, Liebigs Ann. Chem., 232, 236 (1886).
[21] C. G. Overberger and A. Lebovitz, J. Am. Chem. Soc., 76, 2722 (1954).
[22a] S. L. Friess and R. Pinson, jr, J. Am. Chem. Soc., 74, 1302 (1952); [b] M. S. Newman and W. T. Booth, J. Am. Chem. Soc., 67, 154 (1945).
[23] I. Von and E. C. Wagner, J. Org. Chem., 9, 155 (1944).
[24] H. R. Henze and R. L. McKee, J. Am. Chem. Soc., 64, 1672 (1942).
[25] T. Zimmermann, J. Heterocyclic Chem., 37, 1571 (2000).
[26] Reviews on the Fischer indole synthesis: [a] B. Robinson, Chem. Rev., 63, 373 (1963); [b] B. Robinson, Chem. Rev., 69, 227 (1969); [c] B. Robinson, The Fischer Indole Synthesis, Wiley, New York, 1982; [d] D. L. Hughes, Org. Prep. Proced. Int., 25, 607 (1993).
[27] F. Brandl, PhD Thesis, University of Regensburg, Germany, 2000.

