# Ring Transformations of Heterocyclic Compounds. **XXI** [1]. Diastereoselective Built-up of an Aroylcyclohexadiene Moiety as Second Spiro-connected Ring at Spiroindolines by Pyrylium Ring Transformation

# Thomas Zimmermann

#### Institut für Organische Chemie der Universität Leipzig, Permoserstraße 15, D-04303 Leipzig, Germany Received February 5, 2001

2,4,6-Triarylpyrylium perchlorates 1 react with methyleneindolines 3 *in situ* generated from the corresponding methylindolium salts 2, which are spiro-fused with a cycloalkane, benzanellated cycloalkene or a heterocyclic system. These diastereoselective  $2,5-[C_4+C_2]$  pyrylium ring transformations are carried out in the presence of triethylamine/acetic acid in boiling ethanol to give the dispiroindolines 4 with a *trans* configuration of the more bulky substituents at the cyclohexadiene ring. By the same type of transformation the dispiro compounds 7/10 with an additional fused benzene ring are obtained from the pyrylium salt 1a and 6/9, the benzo-fused analogues of 3. Spectroscopic data of the transformation products as well as their mode of formation are discussed.

J. Heterocyclic Chem., 39, 255 (2002).

Ring transformation reactions of heterocycles have been proven to be a powerful tool for the synthesis of a wide range of carbocyclic as well as heterocyclic compounds [2]. Although numerous examples are reported in the literature which proceed with high chemo- and regioselectivity our knowledge on the diastereoselectivity of such reactions is rather small.

Some years ago we have found that 2,4,6-triarylpyrylium salts **1** [3] react with 1-methyl and 1-phenyl substituted 3,3-

dimethyl-2-methyleneindolines (Fischer base and derivatives thereof) [4] to yield aroylspiro[cyclohexadiene-indolines] [5] which represent a novel class of photochromic compounds [6]. From the two possible diastereomers only the one with the more bulky substituents in the *trans* position of the cyclohexadiene ring was obtained in high yield. In the same way, the pyrylium salts **1** react with benzofused methyleneindolines to give diastereomerically pure aroylspiro[cyclohexadiene-indolines] bearing an additional



T. Zimmermann

| 1 | 2/3 | Ar | Ar´ | R  | R´   | Х                                                                | 4  |
|---|-----|----|-----|----|------|------------------------------------------------------------------|----|
| a | f   | Ph | Ph  | Me | Me   | (CH <sub>2</sub> ) <sub>5</sub>                                  | s  |
| a | g   | Ph | Ph  | Me | i-Pr | (CH <sub>2</sub> ) <sub>5</sub>                                  | t  |
| a | h   | Ph | Ph  | Me | t-Bu | $(CH_2)_5$                                                       | u  |
| a | i   | Ph | Ph  | Me | MeO  | (CH <sub>2</sub> ) <sub>5</sub>                                  | v  |
| a | j   | Ph | Ph  | Me | F    | $(CH_2)_5$                                                       | w  |
| a | k   | Ph | Ph  | Me | Cl   | $(CH_2)_5$                                                       | х  |
| a | 1   | Ph | Ph  | Me | Br   | (CH <sub>2</sub> ) <sub>5</sub>                                  | у  |
| a | m   | Ph | Ph  | Me | Ι    | (CH <sub>2</sub> ) <sub>5</sub>                                  | z  |
| a | n   | Ph | Ph  | Me | Н    | $(CH_2)_6$                                                       | aa |
| a | 0   | Ph | Ph  | Me | Н    | $CH_2C_6H_4(0)CH_2$                                              | bb |
| a | р   | Ph | Ph  | Me | Н    | $(0)C_6H_4C_6H_4(0)$                                             | сс |
| a | q   | Ph | Ph  | Me | Н    | (CH <sub>2</sub> ) <sub>2</sub> O(CH <sub>2</sub> ) <sub>2</sub> | dd |

benzene ring at the idoline moiety [1]. The transformations could further be extended to chiral methyleneindolines, *i.e.* to compounds with two different substituents at C-3. In this case, from the four possible diastereomers only one was obtained in high yield, the stereochemistry of which can be influenced by the bulkiness of the substituents at C-3 of the methyleneindoline used [7].

Another possibility for structural variations of the indoline part of the aroylspiro[cyclohexadiene-indolines], which is necessary for further elucidation of the influence of structural changes on their photochromic properties, consists in the introduction of an additional spiro-fused carbo- or heterocycle instead of the two substituents at C-3'. These compounds should be available by ring transformation of the pyrylium salts 1 with spiromethyleneindolines of the type 3, formed *in situ* by deprotonation of the related spiroindolium salts 2. In this paper we wish to present the results of such investigations. When the 2,4,6-triarylpyrylium perchlorates **1a-i** and the spiroindolium perchlorate **2a**, possessing a cyclopentane ring at C-3', were refluxed in ethanol in the presence of triethylamine/acetic acid the transformation proceeded as expected to give the dispiro compounds **4a-i** in 76-90% yield. On using the spiroindolium perchlorates **2b-n** with a cyclohexane ring at C-3' and various substituents at the nitrogen and in 5'-position or with a cyloheptane ring at C-3' the dispiroindolines **4j-aa** were obtained (yield 70-95%). The transformations could further be extended to the spiroin-dolium perchlorates **2o-q**, in which the spiro-fused ring is a benzanellated cycloalkene (**2o,p**) or a heterocycle (**2q**) and to the benzo-fused derivatives **5/8**. They gave rise to the dispiro compounds **4bb-dd**, **7** and **10** in 62-89% yield.

In all examples studied from the two possible diastereomers of 4, 7 and 10 only that one with the more bulky substituents (ArCO and CX, X = spirocycle) *trans* positioned at the cyclohexadiene ring was formed as a racemate.



# Table 1

Physical and Analytical Data for the Dispiro Compounds 4, 7 and 10

| No.         | Compound                                                                                                                    | Yield | Mp      | Molecular Formula                                             |                | Analysis (%) |      |
|-------------|-----------------------------------------------------------------------------------------------------------------------------|-------|---------|---------------------------------------------------------------|----------------|--------------|------|
|             |                                                                                                                             | (%)   | (°C)    | (Molecular Weight)                                            | C              | Calcd./Found | N    |
|             |                                                                                                                             |       |         |                                                               | C              | Н            | Ν    |
| 4a          | 6-Benzoyl-1'-methyl-3,5-diphenyldispiro[cyclohexa-2,4-diene-1,2'-                                                           | 90    | 181-182 | C <sub>37</sub> H <sub>33</sub> NO                            | 87.54          | 6.55         | 2.76 |
|             | indoline-3',1"-cyclopentane]                                                                                                |       |         | (507.7)                                                       | 87.51          | 6.60         | 2.77 |
| 4b          | 6-Benzoyl-1'-methyl-5-(4-methylphenyl)-3-phenyldispiro-                                                                     | 76    | 184-185 | C <sub>38</sub> H <sub>35</sub> NO                            | 87.49          | 6.76         | 3.07 |
| 4.5         | [cyclohexa-2,4-diene-1,2'-indoline-3',1"-cyclopentane]                                                                      | 96    | 177 170 | (521.7)<br>C U NO                                             | 87.58          | 6.80         | 3.10 |
| 4C          | o-Benzoyi-5-(4-methoxypnenyi)-1 -methyi-5-phenyiaispiro-<br>[cyclohexa-2.4-diene-1.2'-indoline-3', 1"-cyclopentane]         | 80    | 1//-1/8 | (537.7)                                                       | 84.88<br>84.60 | 0.30<br>6.61 | 2.60 |
| 4d          | 6-Benzovl-5-(4-chlorophenvl)-1'-methyl-3-phenvldispiro[cyclohexa-                                                           | 82    | 172-173 | CarHaaClNO                                                    | 81.98          | 5.95         | 2.58 |
|             | 2,4-diene-1,2'-indoline-3',1"-cyclopentane]                                                                                 |       |         | (542.1)                                                       | 82.00          | 6.00         | 2.68 |
| 4e          | 6-Benzoyl-5-(4-bromophenyl)-1'-methyl-3-phenyldispiro[cyclohexa-                                                            | 86    | 158-159 | C <sub>37</sub> H <sub>32</sub> BrNO                          | 75.76          | 5.50         | 2.39 |
|             | 2,4-diene-1,2'-indoline-3',1"-cyclopentane]                                                                                 |       |         | (586.6)                                                       | 75.80          | 5.55         | 2.41 |
| 4f          | 6-Benzoyl-1'-methyl-5-(4-nitrophenyl)-3-phenyldispiro[cyclohexa-                                                            | 88    | 203-204 | C <sub>37</sub> H <sub>32</sub> N <sub>2</sub> O <sub>3</sub> | 80.41          | 5.84         | 5.07 |
| 4-          | 2,4-diene-1,2'-indoline-3',1"-cyclopentane]                                                                                 | 70    | 100 100 | (552.7)                                                       | 80.30          | 5.90         | 5.15 |
| 4g          | I -Methyl-0-(4-methylbenzoyl)-5-(4-methylphenyl)-5-phenyl-<br>dispiroloyalohaya 2.4 diana 1.2' indolina 3' 1" ayalopentanal | /8    | 198-199 | $C_{39}H_{37}NO$                                              | 87.44          | 0.90<br>7.01 | 2.01 |
| 4h          | 6-(4-Chlorophenzovl)-3-(4-chlorophenvl)-1'-methyl-5-                                                                        | 80    | 180-181 | CarHaiClaNO                                                   | 77.08          | 5.42         | 2.43 |
|             | phenyldispiro[cyclohexa-2,4-diene-1,2'-indoline-3',1"-cyclopentane]                                                         | 00    | 100 101 | (576.6)                                                       | 77.20          | 5.51         | 2.50 |
| 4i          | 6-(4-Bromobenzoyl)-3-(4-bromophenyl)-1'-methyl-5-phenyld-                                                                   | 81    | 197-198 | C <sub>37</sub> H <sub>31</sub> Br <sub>2</sub> NO            | 66.78          | 4.70         | 2.10 |
|             | ispiro[cyclohexa-2,4-diene-1,2'-indoline-3',1"-cyclopentane]                                                                |       |         | (665.5)                                                       | 66.85          | 4.73         | 2.22 |
| 4j          | 6-Benzoyl-1'-methyl-3,5-diphenyldispiro[cyclohexa-2,4-diene-1,2'-                                                           | 94    | 222-223 | C <sub>38</sub> H <sub>35</sub> NO                            | 87.49          | 6.76         | 2.68 |
| 41          | indoline-3',1"-cyclohexane]                                                                                                 | 01    | 205 206 | (521.7)                                                       | 87.52          | 6.73         | 2.70 |
| 4K          | o-Benzoyi-1-metnyi-5-(4-metnyipnenyi)-5-pnenyidispiro[cyclo-                                                                | 91    | 205-206 | $C_{39}H_{37}NO$                                              | 87.44          | 0.90         | 2.01 |
| 41          | 6-Benzovl-5-(4-chlorophenyl)-1'-methyl-3-phenyldispiro[cyclohexa-                                                           | 85    | 167-168 | CasHa4CINO                                                    | 82.07          | 6.16         | 2.55 |
|             | 2.4-diene-1.2'-indoline-3'.1"-cvclohexanel                                                                                  | 05    | 107 100 | (556.2)                                                       | 82.15          | 6.23         | 2.45 |
| 4m          | 1'-Methyl-6-(4-methylbenzoyl)-3-(4-methylphenyl)-5-phenyl-                                                                  | 90    | 232-233 | C40H39NO                                                      | 87.39          | 7.15         | 2.55 |
|             | dispiro[cyclohexa-2,4-diene-1,2'-indoline-3',1"-cyclohexane]                                                                |       |         | (549.8)                                                       | 87.48          | 7.21         | 2.48 |
| 4n          | 6-(4-Chlorobenzoyl)-3-(4-chlorophenyl)-1'-methyl-5-                                                                         | 95    | 205-206 | C <sub>38</sub> H <sub>33</sub> Cl <sub>2</sub> NO            | 77.28          | 5.63         | 2.37 |
|             | phenyldispiro[cyclohexa-2,4-diene-1,2'-indoline-3',1"-cyclohexane]                                                          | 0.2   | 210 211 | (590.6)                                                       | 77.30          | 5.70         | 2.40 |
| 40          | 6-(4-Bromobenzoyl)-3-(4-bromophenyl)-1'-methyl-5-phenyld-                                                                   | 92    | 210-211 | $C_{38}H_{33}Br_2NO$                                          | 67.17          | 4.90         | 2.06 |
| 4n          | 6-Benzovl-1'-ethyl-3 5-diphenyldispiro[cyclohexa-2 4-diene-1 2'-                                                            | 92    | 242-243 | (079.3)<br>CaoHazNO                                           | 87.44          | 4.92         | 2.11 |
| чр          | indoline-3'.1"-cvclohexanel                                                                                                 | 12    | 242 243 | (535.7)                                                       | 87.30          | 7.00         | 2.60 |
| 4q          | 6-Benzoyl-1'-isoprpyl-3,5-diphenyldispiro[cyclohexa-2,4-diene-1,2'-                                                         | 92    | 188-189 | C40H39NO                                                      | 87.39          | 7.15         | 2.55 |
| -           | indoline-3',1"-cyclohexane]                                                                                                 |       |         | (549.8)                                                       | 87.41          | 7.20         | 2.50 |
| 4r          | 6-Benzoyl-1',3,5-triphenyldispiro[cyclohexa-2,4-diene-1,2'-indoline-                                                        | 70    | 237-238 | C43H37NO                                                      | 88.47          | 6.39         | 2.40 |
|             | 3',1"-cyclohexane]                                                                                                          | 00    | 011 010 | (583.8)                                                       | 88.50          | 6.41         | 2.45 |
| 45          | 6-Benzoyl-1', 5-dimethyl-5, 5-dipnenyldispiro[cyclonexa-2,4-diene-                                                          | 88    | 211-212 | (525.7)                                                       | 87.44          | 6.96<br>7.00 | 2.61 |
| 4t          | 6-Benzovl-5'-isopropyl-1'-methyl-3 5-diphenyldispiro[cyclohexa-                                                             | 95    | 230-231 | $C_{44}H_{44}NO$                                              | 87.30          | 7.00         | 2.70 |
| 71          | 2.4-diene-1.2'-indoline-3'.1"-cvclohexane]                                                                                  | 15    | 250 251 | (563.8)                                                       | 87.30          | 7.40         | 2.55 |
| 4u          | 6-Benzoyl-5'-tert-butyl-1'-methyl-3,5-diphenyldispiro[cyclohexa-                                                            | 84    | 234-235 | $C_{42}H_{43}NO$                                              | 87.31          | 7.50         | 2.42 |
|             | 2,4-diene-1,2'-indoline-3',1"-cyclohexane]                                                                                  |       |         | (577.8)                                                       | 87.45          | 7.53         | 2.48 |
| 4v          | 6-Benzoyl-5'-methoxy-1'-methyl-3,5-diphenyldispiro[cyclohexa-2,4-                                                           | 92    | 218-219 | C <sub>39</sub> H <sub>37</sub> NO <sub>2</sub>               | 84.90          | 6.76         | 2.54 |
|             | diene-1,2'-indoline-3',1"-cyclohexane]                                                                                      | 0.2   | 210 210 | (551.7)                                                       | 84.90          | 6.82         | 2.60 |
| 4w          | 6-Benzoyl-5'-fluoro-1'-methyl-3,5-diphenyldispiro[cyclohexa-2,4-                                                            | 93    | 218-219 | $C_{38}H_{34}FNO$                                             | 84.57          | 6.35         | 2.60 |
| 4v          | 6-Benzovl-5'-chloro-1'-methyl-3 5-diphenyldispiro[cyclobeya-2.4-                                                            | 82    | 226-227 | (339.7)                                                       | 82.02          | 6.16         | 2.55 |
| та          | diene-1 2'-indoline-3' 1"-cyclohexane]                                                                                      | 02    | 220 227 | (556.2)                                                       | 82.22          | 6.20         | 2.43 |
| 4v          | 6-Benzoyl-5'-bromo-1'-methyl-3,5-diphenyldispiro[cyclohexa-2,4-                                                             | 92    | 227-228 | $C_{38}H_{34}BrNO$                                            | 75.99          | 5.71         | 2.33 |
| •           | diene-1,2'-indoline-3',1"-cyclohexane]                                                                                      |       |         | (600.6)                                                       | 76.00          | 5.82         | 2.30 |
| 4z          | 6-Benzoyl-5'-iodo-1'-methyl-3,5-diphenyldispiro[cyclohexa-2,4-                                                              | 90    | 239-240 | C <sub>38</sub> H <sub>34</sub> INO                           | 70.48          | 5.29         | 2.16 |
|             | diene-1,2'-indoline-3',1"-cyclohexane]                                                                                      |       |         | (647.6)                                                       | 70.53          | 5.36         | 2.20 |
| 4aa         | 6"-Benzoyl-1'-methyl-3",5"-diphenyldispiro[cycloheptane-1,3'-indo-                                                          | 95    | 229-230 | C <sub>39</sub> H <sub>37</sub> NO                            | 87.44          | 6.96         | 2.99 |
| <b>4</b> 66 | Ine-2', I"-cyclohexa-[2.4]diene]<br>6 Penzovi 1' methyl 2.5 dinhenyldieniro[evelohexa 2.4 diene 1.2'                        | 80    | 206 207 | (535.7)<br>C H NO                                             | 87.39          | 7.01         | 2.90 |
| 400         | o-Denzoyi-1-memyi-5,5-aiphenyiaispiro[cycionexa-2,4-aiene-1,2-<br>indoline-3' 2"-indane]                                    | 89    | 200-207 | (555.7)                                                       | 00.02<br>88.61 | 5.99         | 2.52 |
| 4cc         | 6-Benzovl-1'-methyl-3.5-diphenyldispiro[cyclohexa-2.4-diene-1.2'-                                                           | 81    | 189-190 | C45H22NO                                                      | 89.52          | 5.01         | 2.32 |
|             | indoline-3',9"-fluorene]                                                                                                    |       |         | (603.8)                                                       | 89.61          | 5.11         | 2.40 |
| 4dd         | 6-Benzoyl-1'-methyl-3,5-diphenyldispiro[cyclohexa-2,4-diene-1,2'-                                                           | 78    | 228-229 | C <sub>37</sub> H <sub>33</sub> NO <sub>2</sub>               | 84.86          | 6.35         | 2.67 |
|             | indoline-3',4"-tetrahydropyrane]                                                                                            |       |         | (523.7)                                                       | 84.70          | 6.41         | 2.70 |
| 7           | 6-Benzoyl-3'-methyl-3,5-diphenyldispiro[cyclohexa-2,4-diene-1,2'-                                                           | 76    | 187-188 | C <sub>42</sub> H <sub>37</sub> NO                            | 88.23          | 6.52         | 2.45 |
| 10          | benzo[e]indole-l',l"-cyclohexane]                                                                                           | (2)   | 000.000 | (571.8)                                                       | 88.30          | 6.58         | 2.41 |
| 10          | o-Denzoyi-1-metnyi-5,5-dipnenyidispiro[cyclonexa-2,4-diene-1,2'-                                                            | 62    | 228-229 | (571.8)                                                       | 88.23          | 0.52<br>6.48 | 2.45 |
|             | oonzo[g]muoor-5,1 -cyclollexalle]                                                                                           |       |         | (3/1.0)                                                       | 00.11          | 0.40         | 4.91 |

# T. Zimmermann

 Table 2

 Spectral Data for the Dispiro Compounds 4, 7 and 10

| Compound           | IR (KBr)            | UV (CH <sub>3</sub> CN)                    | <sup>1</sup> H-NMR (deuteriochloroform) [a]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|--------------------|---------------------|--------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                    | (cm <sup>-1</sup> ) | $\lambda_{max}$ (nm)                       | δ (ppm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                    | CO                  | $(\log \varepsilon)$                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                    |                     |                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| <b>4a</b> [b],[c]  | 1677                | 254 (4.61), 311 (4.02), 410 sh             | 1.29-2.28 (m, 8H, 3',3'-(CH <sub>2</sub> ) <sub>4</sub> ), 2.45 (s, 3H, 1'-CH <sub>3</sub> ), 5.37 (s, 1H, 6-H), 5.53 (d, 1H, 7'-H), 5.94                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                    |                     | (2.98)                                     | (s, 1H, 2-H), 6.81 (s, 1H, 4-H), 6.55-7.60 (m, 18H, arom-H)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 4b                 | 1676                | 254 (4.62), 311 sh (4.08), 417             | 1.27-2.28 (m, 8H, 3',3'-(CH <sub>2</sub> ) <sub>4</sub> ), $2.14$ (s, 3H, 5-CH <sub>3</sub> C <sub>6</sub> H <sub>4</sub> ), $2.45$ (s, 3H, 1'-CH <sub>3</sub> ), $5.37$ (s, 1H, 6-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                    |                     | sh (3.00)                                  | H), 5.53 (d, 1H, 7-H), 5.92 (s, 1H, 2-H), 6.79 (s, 1H, 4-H), 6.54-7.61 (m, 17H, arom-H)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 4c                 | 16/6                | 251 (4.57), 270 sh (4.47), 315             | $1.25-2.34 \text{ (m, 8H, 3', 3'-(CH_2)_4)}, 2.45 \text{ (s, 3H, 1'-CH_3)}, 3.60 \text{ (s, 3H, 5-CH_3OC_6H_4)}, 5.35 \text{ (s, 1H, 1)}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                    |                     | (4.11), 417 sh (3.13)                      | 6-H), 5.53 (d, 1H, 7-H), 5.89 (s, 1H, 2-H), 6.73 (s, 1H, 4-H), 6.54-7.61 (m, 17H, arom-H)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 4d                 | 1677                | 256 (4.64), 314 (4.09), 417 sh             | 1.26-2.29 (m, 8H, 3',3'-(CH <sub>2</sub> ) <sub>4</sub> ), 2.45 (s, 3H, 1'-CH <sub>3</sub> ), 5.32 (s, 1H, 6-H), 5.53 (d, 1H, 7'-H), 5.96                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                    |                     | (3.06)                                     | (s, 1H, 2-H), 6.79 (s, 1H, 4-H), 6.54-7.59 (m, 17H, arom-H)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 4e                 | 16/7                | 256 (4.63), 314 (4.08), 417 sh             | $1.26-2.30 \text{ (m, 8H, 3', 3'-(CH_2)_4)}, 2.45 \text{ (s, 3H, 1'-CH_3)}, 5.31 \text{ (s, 1H, 6-H)}, 5.54 \text{ (d, 1H, 7'-H)}, 5.96$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 4.0                |                     | (3.06)                                     | (s, 1H, 2-H), 6.80 (s, 1H, 4-H), 6.55-7.60 (m, 17H, arom-H)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| <b>4</b> f         | 16/6                | 251 (4.55), 370 (4.03), 455 sh             | 1.29-2.27 (m, 8H, 3', 3'-(CH <sub>2</sub> ) <sub>4</sub> ), 2.47 (s, 3H, 1'-CH <sub>3</sub> ), 5.36 (s, 1H, 6-H), 5.56 (d, 1H, 7'-H), 6.06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                    |                     | (3.24)                                     | (s, 1H, 2-H), 6.98 (s, 1H, 4-H), 6.56-7.97 (m, 17H, arom-H)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 4g                 | 16/5                | 261 (4.70), 314 (4.02), 417 sh             | 1.24-2.22 (m, 8H, 3', 3'-(CH <sub>2</sub> ) <sub>4</sub> ), 2.25 (s, 3H, 3'-CH <sub>3</sub> C <sub>6</sub> H <sub>4</sub> ), 2.32 (s, 3H, 6-CH <sub>3</sub> C <sub>6</sub> H <sub>4</sub> CO), 2.45 (s, 2H) = 0.000 (s, 2H) = 0.0000 (s, 2H) = 0.000 (s, 2H) = 0.00 |
|                    |                     | (3.04)                                     | 3H, T-CH <sub>3</sub> ), 5.31 (s, 1H, 6-H), 5.38 (d, 1H, 7-H), 5.90 (s, 1H, 2-H), 6.79 (s, 1H, 4-H), 6.53-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                    | 1 (70)              | 260 (1.70) 214 1 (1.00) 424                | 7.50 (m, 16H, arom-H)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 4h                 | 16/8                | 260 (4.72), 314 sh (4.02), 424             | $1.29-2.25$ (m, 8H, $3', 3'-(CH_2)_4$ ), 2.45 (s, 3H, $1'-CH_3$ ), 5.30 (s, 1H, 6-H), 5.59 (d, 1H, 7'-H), 5.91                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                    | 4 680               | sh (2.95)                                  | (s, 1H, 2-H), 6.73 (s, 1H, 4-H), 6.57-7.51 (m, 16H, arom-H)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 41                 | 16/8                | 263 (4.76), 313 sh (4.04), 417             | $1.23-2.28$ (m, 8H, $3^{\circ}, 3^{\circ}-(CH_2)_4$ ), 2.45 (s, 3H, 1-CH <sub>3</sub> ), 5.29 (s, 1H, 6-H), 5.59 (d, 1H, 7-H), 5.92                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 4. 11 1 1 1        | 1 (70)              | sh (3.04)                                  | (s, 1H, 2-H), 6.72 (s, 1H, 4-H), 6.56-7.50 (m, 16H, arom-H)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| <b>4j</b> [b],[c]  | 16/8                | 255 (4.61), 309 sh (4.04), 41/             | 1.09-1.91 (m, 10H, 3', 3'-(CH <sub>2</sub> ) <sub>5</sub> ), 2.46 (s, 3H, 1'-CH <sub>3</sub> ), 5.30 (s, 1H, 6-H), 5.48 (d, 1H, /'-H),                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 4                  | 1(70                | sn (3.08)                                  | 5.96 (s, 1H, 2-H), $6.81$ (s, 1H, 4-H), $6.53$ -7.63 (m, 18H, arom-H)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 4K                 | 16/9                | 255 (4.63), 313 sh (4.10), 417             | 0.99-2.04 (m, 10H, 3',3'-(CH <sub>2</sub> ) <sub>5</sub> ), 2.14 (s, 3H, 5-CH <sub>3</sub> C <sub>6</sub> H <sub>4</sub> ), 2.46 (s, 3H, 1'-CH <sub>3</sub> ), 5.30 (s, 1H, 6-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 4                  | 1(70                | sh (3.06)                                  | H), $5.49$ (d, 1H, 7-H), $5.95$ (s, 1H, 2-H), $6.78$ (s, 1H, 4-H), $6.53$ -7.65 (m, 1/H, arom-H)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 41                 | 16/8                | 256 (4.63), 312 (4.10), 417 sn             | $1.02 \cdot 1.97$ (m, 10H, 3',3'-(CH <sub>2</sub> ) <sub>5</sub> ), 2.46 (s, 3H, 1'-CH <sub>3</sub> ), 5.25 (s, 1H, 6-H), 5.49 (d, 1H, 7'-H),                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 4                  | 1675                | (3.15)                                     | 5.97 (s, IH, 2-H), $0.79$ (s, IH, 4-H), $0.54-7.02$ (m, 1/H, arom-H)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 4111               | 10/3                | 201 (4.07), 511 (4.02), 415 81             | 1.00-1.90 (III, 10H, 5, 5, 5 -(CH <sub>2</sub> )5), 2.27 (8, 5H, 5-CH <sub>3</sub> C <sub>6</sub> H <sub>4</sub> ), 2.34 (8, 5H, 6-CH <sub>3</sub> C <sub>6</sub> H <sub>4</sub> CO), 2.40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                    |                     | (3.13)                                     | $(8, 5\Pi, 1-C\Pi_3), 5.25$ (8, 1\Pi, 0-П), 5.34 (0, 1П, 7-П), 5.91 (8, 1П, 2-П), 0.79 (8, 1П, 4-П), 0.52-<br>7.52 (m, 16U arom U)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 4                  | 1(77                | 2(1 (4 74) 211 -h (4 07) 424               | 7.55 (III, 10H, aloIII-H)<br>1.05.2.00 (m, 10H, 212) (CH.). 2.45 (- 2H, 11 CH.). 5.22 (- 1H, CH.). 5.55 (-1.1H, 7H)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 411                | 10//                | $201 (4.74), 511 \sin (4.07), 424$         | $1.05-2.00$ (III, $10n$ , $5, 5$ -( $Cn_2/5$ ), 2.45 (8, $5n$ , $1$ - $Cn_3$ ), 5.25 (8, $1n$ , $0$ - $n$ ), 5.55 (0, $1n$ , $7$ - $n$ ),                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 40                 | 1677                | 311 (3.10)<br>263 (4 77) 313 sh (4 06) 417 | 3.95 (8, 11, 2-11), 0.75 (8, 11, 4-11), 0.35-7.34 (iii, 101, atolii-11)<br>1 11 1 07 (m 10H 2'3' (CH)) 2 45 (e 2H 1'CH) 5 22 (e 1H 6 H) 5 56 (d 1H 7' H)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 40                 | 1077                | 203 (4.77), 513 SII (4.00), 417            | 5.02 (a, 14, 2, 4), 6.72 (a, 14, 4, 4), 6.56, 7.50 (m, 164) arom 4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 4n                 | 1676                | 254 (4 54) 313 (3 94) 417 sh               | $0.89 (t 3H 1'_{CH,CH}) = 1.09 2 00 (m 10H 3' 3'_{CH}) = 2.46 (m 1H 1'_{CH,CH}) = 3.05 (m 10H 3' 3'_{CH}) = 2.46 (m 1H 1'_{CH,CH}) = 3.05 (m 10H 3'_{CH}) = 3.0$                                                                                      |
| ΨP                 | 1070                | (3.06)                                     | $1H 1'-CH_2CH_3$ , $1.0-2.00$ (m, $10H, 5, 5-(CH_2)5, 2.40$ (m, $11, 1-CH_2CH_3$ ), $5.05$ (m, $11H 1'-CH_2CH_3$ )), $5.05$ (m, $11H 1'-CH_2CH_3$ ), $5.05$ (m, $11H 1'-CH_2CH_3$ )), $5.05$                     |
|                    |                     | (3.00)                                     | 651.763  (m  18H  arom-H)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 4α                 | 1679                | 252 (4 56) 311 (4 00) 410 sh               | $0.82 (d. 3H. 1-CH(CH_2)_2)$ 1.14 (d. 3H. 1-CH(CH_2)_2) 1.26-2.01 (m. 10H. 3' 3'-(CH_2)_z) 3.67                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| .4                 | 10//                | (3.22)                                     | $(m \ 1H \ 1-CH(CH_2)_2) \ 5 \ 36 \ (s \ 1H \ 6-H) \ 6 \ 00 \ (s \ 1H \ 2-H) \ 6 \ 19 \ (d \ 1H \ 7'-H) \ 6 \ 76 \ (s \ 1H \ 4-H)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                    |                     | (3.22)                                     | 6.59-7.63 (m. 18H. arom-H)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 4r                 | 1679                | 254 (4 57) 291 (4 24) 314 sh               | 1.02-2.01 (m, 10H, 3' 3'-(CH <sub>2</sub> ) <sub>e</sub> ), 5.29 (s, 1H, 6-H), 5.72 (d, 1H, 2-H), 5.84 (d, 1H, 7'-H), 6.88                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                    | 10//                | (4.22), 400  sh (3.06)                     | (s, 1H, 4-H), 6.70-7.52 (m, 18H, arom-H)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 4s                 | 1677                | 254 (4.57), 316 (3.98), 420 sh             | 1.11-1.91 (m. 10H, 3'.3'-(CH <sub>2</sub> ), 2.25 (s. 3H, 5'-CH <sub>2</sub> ), 2.45 (s. 3H, 1'-CH <sub>2</sub> ), 5.28 (s. 1H, 6-H).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                    |                     | (3.04)                                     | 5.40 (d. 1H. 7'-H), 5.96 (s. 1H, 2-H), 6.80 (s. 1H, 4-H), 6.64-7.64 (m. 17H, arom-H)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 4t                 | 1678                | 254 (4.65), 313 sh (4.06), 420             | 1.21 (d, 3H, 5'-CH(CH <sub>2</sub> ) <sub>2</sub> ), $1.23$ (d, 3H, 5'-CH(CH <sub>2</sub> ) <sub>2</sub> ), $1.08-2.02$ (m, 10H, 3',3'-(CH <sub>2</sub> ) <sub>5</sub> ), $2.46$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                    |                     | sh (3.10)                                  | (s, 3H, 1'-CH <sub>3</sub> ), 2.81 (m, 1H, 5'-CH(CH <sub>3</sub> ) <sub>2</sub> ), 5.29 (s, 1H, 6-H), 5.40 (d, 1H, 7'-H), 5.96 (s, 1H,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                    |                     |                                            | 2-H), 6.80 (s, 1H, 4-H), 6.68-7.63 (m, 17H, arom-H)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 4u                 | 1678                | 254 (4.60), 313 (4.00), 417 sh             | 1.14-2.00 (m, 10H, 3',3'-(CH <sub>2</sub> ) <sub>5</sub> ), 1.29 (s, 9H, 5'-C(CH <sub>3</sub> ) <sub>3</sub> ), 2.46 (s, 3H, 1'-CH <sub>3</sub> ), 5.29 (s, 1H, 6-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                    |                     | (3.00)                                     | H), 5.40 (d, 1H, 7'-H), 5.96 (s, 1H, 2-H), 6.80 (s, 1H, 4-H), 6.84-7.64 (m, 17H, arom-H)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 4v                 | 1677                | 258 (4.70), 329 sh (4.00), 424             | 1.08-1.93 (m, 10H, 3',3'-(CH <sub>2</sub> ) <sub>5</sub> ), 2.45 (s, 3H, 1'-CH <sub>3</sub> ), 3.73 (s, 3H, 5'-CH <sub>3</sub> ), 5.27 (s, 1H, 6-H),                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                    |                     | sh (3.00)                                  | 5.37 (d, 1H, 7'-H), 5.95 (s, 1H, 2-H), 6.80 (s, 1H, 6-H), 6.41-7.63 (m, 17H, arom-H)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 4w                 | 1678                | 253 (4.60), 317 (3.99), 407 sh             | 1.09-1.94 (m, 10H, 3',3'-(CH <sub>2</sub> ) <sub>5</sub> ), 2.44 (s, 3H, 1'-CH <sub>3</sub> ), 5.28 (s, 1H, 6-H), 5.31 (m, 1H, 7'-H),                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                    |                     | (3.18)                                     | 5.92 (s, 1H, 2-H), 6.80 (s, 1H, 4-H), 6.50-7.63 (m, 17H, arom-H)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 4x                 | 1678                | 254 (4.57), 314 (3.99), 407 sh             | 1.08-1.98 (m, 10H, 3',3'-(CH <sub>2</sub> ) <sub>5</sub> ), 2.43 (s, 3H, 1'-CH <sub>3</sub> ), 5.29 (s, 1H, 6-H), 5.35 (d, 1H, 7'-H),                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                    |                     | (3.15)                                     | 5.89 (s, 1H, 2-H), 6.81 (s, 1H, 4-H), 6.77-7.63 (m, 17H, arom-H)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 4y                 | 1678                | 254 (4.57), 316 sh (4.00), 417             | 1.09-1.99 (m, 10H, 3',3'-(CH <sub>2</sub> ) <sub>5</sub> ), 2.42 (s, 3H, 1'-CH <sub>3</sub> ), 5.29 (s, 1H, 6-H), 5.31 (d, 1H, 7'-H),                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                    |                     | sh (3.15)                                  | 5.88 (s, 1H, 2-H), 6.79 (s, 1H, 4-H), 6.91-7.61 (m, 17H, arom-H)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 4z                 | 1678                | 256 (4.59), 269 sh (4.52), 313             | 1.09-1.99 (m, 10H, 3',3'-(CH <sub>2</sub> ) <sub>5</sub> ), 2.43 (s, 3H, 1'-CH <sub>3</sub> ), 5.25 (d, 1H, 7'-H), 5.29 (s, 1H, 6-H),                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                    |                     | sh (4.01), 410 sh (3.01)                   | 5.88 (s, 1H, 2-H), 6.79 (s, 1H, 4-H), 7.09-7.61 (m, 17H, arom-H)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| <b>4aa</b> [b],[c] | 1678                | 254 (4.58), 313 (3.99), 417 sh             | 1.32-2.17 (m, 12H, 3',3'-(CH <sub>2</sub> ) <sub>6</sub> ), 2.42 (s, 3H, 1'-CH <sub>3</sub> ), 5.24 (s, 1H, 6"-H), 5.50 (d, 1H, 7'-H),                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                    |                     | (2.95)                                     | 6.00 (s, 1H, 2"-H), 6.83 (s, 1H, 4"-H), 6.54-7.62 (m, 18H, arom-H)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| <b>4bb</b> [b],[c] | 1678                | 253 (4.62), 313 sh (4.04), 410             | 2.47 (s, 3H, 1'-CH <sub>3</sub> ), 2.59 (d, J = 10.0 Hz, 1H, 3',3'-(CH <sub>2</sub> ) <sub>2</sub> C <sub>6</sub> H <sub>4</sub> ), 3.21 (d, J = 10.2 Hz, 1H,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                    |                     | sh (3.00)                                  | $3',3'-(CH_2)_2C_6H_4$ , $3.61$ (d, J = 10.0 Hz, 1H, $3',3'-(CH_2)_2C_6H_4$ ), $3.64$ (d, J = 10.2 Hz, 1H, $3',3'-(CH_2)_2C_6H_4$ ), $3.64$ (d, J = 10.2 Hz, 1H, $3',3'-(CH_2)_2C_6H_4$ ), $3.64$ (d, J = 10.2 Hz, 1H, $3',3'-(CH_2)_2C_6H_4$ ), $3.64$ (d, J = 10.2 Hz, 1H, $3',3'-(CH_2)_2C_6H_4$ ), $3.64$ (d, J = 10.2 Hz, 1H, $3',3'-(CH_2)_2C_6H_4$ ), $3.64$ (d, J = 10.2 Hz, 1H, $3',3'-(CH_2)_2C_6H_4$ ), $3.64$ (d, J = 10.2 Hz, 1H, $3',3'-(CH_2)_2C_6H_4$ ), $3.64$ (d, J = 10.2 Hz, 1H, $3',3'-(CH_2)_2C_6H_4$ ), $3.64$ (d, J = 10.2 Hz, 1H, $3',3'-(CH_2)_2C_6H_4$ ), $3.64$ (d, J = 10.2 Hz, 1H, $3',3'-(CH_2)_2C_6H_4$ ), $3.64$ (d, J = 10.2 Hz, 1H, $3',3'-(CH_2)_2C_6H_4$ ), $3.64$ (d, J = 10.2 Hz, 1H, $3',3'-(CH_2)_2C_6H_4$ ), $3.64$ (d, J = 10.2 Hz, 1H, $3',3'-(CH_2)_2C_6H_4$ ), $3.64$ (d, J = 10.2 Hz, 1H, $3',3'-(CH_2)_2C_6H_4$ ), $3.64$ (d, J = 10.2 Hz, 1H, $3',3'-(CH_2)_2C_6H_4$ ), $3.64$ (d, J = 10.2 Hz, 1H, $3',3'-(CH_2)_2C_6H_4$ ), $3.64$ (d, J = 10.2 Hz, 1H, $3',3'-(CH_2)_2C_6H_4$ ), $3.64$ (d, J = 10.2 Hz, 1H, $3',3'-(CH_2)_2C_6H_4$ ), $3.64$ (d, J = 10.2 Hz, 1H, $3',3'-(CH_2)_2C_6H_4$ ), $3.64$ (d, J = 10.2 Hz, 1H, $3',3'-(CH_2)_2C_6H_4$ ), $3.64$ (d, J = 10.2 Hz, 1H, $3',3'-(CH_2)_2C_6H_4$ ), $3.64$ (d, J = 10.2 Hz, 1H, $3',3'-(CH_2)_2C_6H_4$ ), $3.64$ (d, J = 10.2 Hz, 1H, $3',3'-(CH_2)_2C_6H_4$ ), $3.64$ (d, J = 10.2 Hz, 1H, $3',3'-(CH_2)_2C_6H_4$ ), $3.64$ (d, J = 10.2 Hz, 1H, $3',3'-(CH_2)_2C_6H_4$ ), $3.64$ (d, J = 10.2 Hz, 1H, 3', 3'-(CH_2)_2C_6H_4)), $3.64$ (d, J = 10.2 Hz, 1H, 3', 3'-(CH_2)_2C_6H_4)), $3.64$ (d, J = 10.2 Hz, 1H, 3', 3'-(CH_2)_2C_6H_4)), $3.64$ (d, J = 10.2 Hz, 1H, 3', 3'-(CH_2)_2C_6H_4)), $3.64$ (d, J = 10.2 Hz, 1H, 3', 3'-(CH_2)_2C_6H_4)), $3.64$ (d, J = 10.2 Hz, 2Hz, 2Hz, 3Hz, 3Hz, 3Hz, 3Hz, 3Hz, 3Hz, 3Hz, 3                                                                                                                                                                                                                                                                                                                                                                                |
|                    |                     |                                            | $(CH_2)_2C_6H_4$ , 2.47 (s, 3H, 1'-CH <sub>3</sub> ), 5.39 (s, 1H, 6-H), 5.60 (d, 1H, 7'-H), 5.98 (s, 1H, 2-H), 6.79                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                    |                     |                                            | (s, 1H, 4-H), 6.35-7.57 (m, 22H, arom-H)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |

Table 2 (Continued)

| Compound           | IR (KBr)<br>(cm <sup>-1</sup> )<br>CO | $\begin{array}{c} UV \ (CH_3CN) \\ \lambda_{max} \ (nm) \\ (\log \epsilon) \end{array}$ | <sup>1</sup> H-NMR (deuteriochloroform) [a] $\delta$ (ppm)                                                                                                                                                                                                                                                                                                                                                                                       |
|--------------------|---------------------------------------|-----------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <b>4cc</b> [b],[c] | 1678                                  | 254 (4.70), 314 sh (4.02), 400<br>sh (2.95)                                             | 2.51 (s, 3H, 1'-CH <sub>3</sub> ), 5.39 (s, 1H, 6-H), 5.55 (s, 1H, 2-H), 6.13 (s, 1H, 4-H), 6.22 (d, 1H, 7'-H), 6.51-7.98 (m, 26H arom-H)                                                                                                                                                                                                                                                                                                        |
| 4dd                | 1678                                  | 254 (4.58), 313 (3.99), 417 sh<br>(2.95)                                                | 1.59 (d, 1H, 3',3'-(CH <sub>2</sub> CH <sub>2</sub> ) <sub>2</sub> O), 1.86 (d, 1H, 3',3'-(CH <sub>2</sub> CH <sub>2</sub> ) <sub>2</sub> O), 2.10-2.39 (m, 2H, 3',3'-(CH <sub>2</sub> CH <sub>2</sub> ) <sub>2</sub> O), 2.47 (s, 3H, 1'-CH <sub>3</sub> ), 3.43-4.11 (m, 4H, 3',3'-(CH <sub>2</sub> CH <sub>2</sub> ) <sub>2</sub> O), 5.27 (s, 1H, 6-H), 5.54 (d, 1H, 7'-H), 5.92 (s, 1H, 2-H), 6.83 (s, 1H, 4-H), 6.57-7.63 (m, 18H, arom-H) |
| 7                  | 1677                                  | 218 sh (4.63), 257 (4.82), 304<br>sh (4.20), 315 (4.26), 397 sh<br>(3.64)               | 1.38-2.98 (m, 10H, 1',1'-(CH <sub>2</sub> ) <sub>5</sub> ), 2.60 (s, 3H, 3'-CH <sub>3</sub> ), 5.58 (s, 1H, 6-H), 5.82 (d, 1H, 4'-H), 6.19 (s, 1H, 2-H), 6.92 (s, 1H, 4-H), 7.03-8.12 (m, 20H, arom-H)                                                                                                                                                                                                                                           |
| 10                 | 1677                                  | 254 (4.68), 325 (4.01), 350 sh<br>(3.98)                                                | 1.13-1.96 (m, 10H, 3',3'-(CH <sub>2</sub> ) <sub>5</sub> ), 3.10 (s, 3H, 1'-CH <sub>3</sub> ), 5.23 (s, 1H, 6-H), 6.22 (s, 1H, 2-H), 6.81 (s, 1H, 4-H), 6.63-7.67 (m, 21H, arom-H)                                                                                                                                                                                                                                                               |

[a] 2-H, 2"-H, 4-H, 4'-H, 4"-H, 6-H, 6"-H and 7'-H denote the protons in 2-, 2"-, 4-, 4'-, 4"-, 6-, 6"- and 7'-position, respectively, and arom-H the protons bonded to the benzene rings. [b] <sup>13</sup>C nmr (deuteriochloroform) **4a** 21.4, 22.4, 28.6, 33.8 (3',3'-(CH<sub>2</sub>)<sub>4</sub>), 29.2 (1'-CH<sub>3</sub>), 45.2 (C-6), 64.2 (C-3'), 75.2 (C-1), 103.5, 114.4, 121.0, 121.5, 122.2, 123.5, 124.1, 125.9, 126.3, 126.5, 126.6, 126.7, 130.7, 134.3, 134.5, 136.9, 137.0, 137.6, 138.3, 146.9 (olefinic and aromatic carbons), 195.3 (6-COPh), **4j** 19.8, 21.8, 24.0, 27.8, 31.0 (3',3'-(CH<sub>2</sub>)<sub>5</sub>), 29.5 (1'-CH<sub>3</sub>), 43.6 (C-6), 56.8 (C-3'), 77.0 (C-1), 104.0, 114.0, 121.2, 122.5, 123.5, 124.3, 124.6, 125.8, 125.9, 126.0, 126.5, 126.7, 126.8, 130.8, 132.7, 134.2, 137.1, 137.2, 137.9, 138.6, 147.6 (olefinic and aromatic carbons), 195.8 (6-COPh), **4aa** 21.0, 22.2, 29.5, 30.0, 30.2, 33.0 (3',3'-(CH<sub>2</sub>)<sub>6</sub>), 29.2 (1'-CH<sub>3</sub>), 44.9 (C-6'), 58.3 (C-3'), 77.2 (C-1''), 103.4, 103.9, 114.3, 117.7, 121.1, 121.9, 122.9, 123.1, 124.0, 125.8, 126.0, 126.3, 126.6, 126.7, 130.7, 134.2, 134.8, 136.5, 137.1, 137.5, 138.4, 146.6 (olefinic and aromatic carbons), 195.0 (6"-COPh), **4ba** 29.1 (1'-CH<sub>3</sub>), 36.7, 40.5 (3',3'-(CH<sub>2</sub>)<sub>2</sub>C<sub>6</sub>H<sub>4</sub>), 45.0 (C-6), 63.3 (C-3'), 74.7 (C-1), 103.7, 114.6, 120.3, 121.0, 121.6, 122.7, 123.0, 123.4, 124.1, 124.4, 124.6, 125.9, 126.0, 126.2, 126.4, 126.5, 126.7, 130.9, 133.6, 134.3, 136.7, 136.9, 138.0, 138.2, 139.5, 140.2, 146., 122.7, 123.0, 123.4, 124.1, 124.4, 124.6, 125.9, 126.0, 126.2, 126.4, 126.5, 126.7, 130.9, 133.6, 134.3, 136.7, 136.9, 138.0, 138.2, 139.5, 140.2, 146.7, 123.0, 123.4, 124.1, 124.4, 124.9, 125.3, 125.5, 125.8, 125.9, 126.3, 126.6, 126.8, 126.9, 130.0, 131.0, 135.4, 135.5, 136.7, 138.0, 138.7, 138.8, 139.1, 144.8, 145.3, 150.4 (olefinic and aromatic carbons), 194.9 (6-COPh), [c] Mass spectra: (70 eV), m/z (%) **4a** 507 (58) [M+], 402 (80) [M+-PhCO], 105 (46) [PhCO+], 91 (100), 77 (32) [Ph+], **4j** 521 (100) [M+], 416 (39) [M+-PhCO], 105 (63) [PhCO+], 77 (55) [Ph+], **4aa** 535 (34) [M+], 430 (31) [M+-PhCO], 91 (100), 4bb

One may assume that in the course of the pyrylium ring transformations the cation of the spiroindolium salts 2, 5 and 8 is deprotonated to the corresponding methyleneindoline 3, 6 and 9, respectively, acting as carbon nucleophile of the enamine type as already discussed for related reactions of the salts 1 with other methyleneindolines [1,5,7]. The 2H-pyran derivative formed [8] as the result of the attack at the preferred position 2 of 1 [3] is then ring opened by an electrocyclic reaction to a merocyanine which recyclizes finally by another electrocyclic process to the dispiro compounds 4, 7 and 10 [9]. Since the cyclohexadiene moiety is built up from four carbon atoms of the pyrylium cation and two C-atoms of the spiromethyleneindoline by connection of the former positions 2 and 4 of 1 by a C<sub>2</sub>-chain the reaction can be classified as a 2,5- $[C_4+C_2]$  transformation [10].

The results of elemental analyses and spectroscopic data are in agreement with the structure proposed for the dispiro compounds 4/7/10. In the <sup>1</sup>H nmr spectra the broad multiplet at 0.99-2.34 ppm can be attributed to the protons of the spiro-fused cyclopentane, cyclohexane and cycloheptane, respectively, present in **4a-aa**, **7** and **10**. Cooling a solution of **4a**, **4j** and **4aa** in deuterated methylenechloride to -90° does not lead to sharp signals of these protons indicating a high conformational flexibility of the cycloalkane moiety even at low temperatures. The protons of the *N*-methyl group of **4a-o** and **4s-dd** show the expected singlet at 2.42-3.10 ppm. The aromatic proton adjacent to the nitrogen causes a doublet at 5.29-6.22 ppm. This signal is significantly shifted upfield in comparison to the multiplet of the other protons bonded at the benzene rings (6.35-8.12 ppm) by the known shielding effect of the NR-group (R = alkyl) [11]. The signals of the protons of the cyclohexadiene part of the molecule can be located as a singlet at 5.22-5.58 ppm (methine proton) and two singlets at 5.55-6.98 ppm (olefinic protons). The presence of the carbonyl group is documented in the ir spectra by a strong C=O-vibration band at 1675-1679 cm<sup>-1</sup> [12] and, as shown for **4a**, **4j** and **4aa-cc**, by the typical signal of the carbonyl carbon in the <sup>13</sup>C nmr spectra around 195 ppm. Finally, the uv-vis spectra show an absorption at 251-263 nm of high intensity accompanied by up to three smaller bands at longer wavelengths.

All spectroscopic parameters determined for the dispiro compounds 4, 7 and 10 are comparable to those obtained for the structurally related diastereomerically pure aroyl-spiro[cyclohexadiene-indolines] with two identical or different substituents at C-3' [5,7] as well as for their benzo-fused analogues [1]. The structure of these compounds were additionally confirmed by X-ray structure determinations that clearly show a *trans* configuration of the more bulky substituents at the cyclohexadiene ring. Hence, it can be concluded that, as a result of the ring transformations  $1 + 3 \rightarrow 4$  and  $1a + 6/9 \rightarrow 7/10$ , the diastereomer is formed, where ArCO and CX (X = spirocycle) also have a *trans* configuration.

#### EXPERIMENTAL

The melting points were measured on a Boëtius hot stage apparatus. The <sup>1</sup>H nmr and <sup>13</sup>C nmr spectra were recorded on a Varian Gemini 200 spectrometer (1H: 199.975 MHz, 13C: 50.289 MHz) and on a Varian Gemini 2000 spectrometer (1H: 200.041 MHz, 13C: 50.305 MHz) in deuteriochloroform or dimethyl-d<sub>6</sub> sulfoxide at 25° with hexamethyl disiloxane as internal standard, ir spectra were obtained on a ATI Mattson Genesis FTIR spectrophotometer (in potassium bromide) and uv-vis spectra on a Zeiss M 40 instrument (acetonitrile, 25°). Mass spectra were determined on a Varian MAT 212 spectrometer (70 eV, electron impact). The pyrylium perchlorates 1a [13], 1b [14], 1c [15], 1d,f [16], 1e [17], 1g-i [18], N-ethyl-N-phenylhydrazine [19], N-isopropyl-N-phenylhydrazine [19], 1-naphthylhydrazine [20], 2-naphthylhydrazine [20], 1-cylopentylethanone [21], 1-cycloheptylethanone [22], 1-(9H-fluoren-9-yl)ethanone [23] and 1-(tetrahydropyran-4-yl)ethanone [24] were synthesized according to literature procedures. The preparation of the spiroindolium perchlorates 2b and 2o was reported in a previous paper [25]. N-Methyl-N-phenylhydrazine, N,N-diphenylhydrazine hydrochloride, 4-methylphenylhydrazine hydrochloride, 4-fluorophenylhydrazine hydrochloride, 4-chlorophenylhydrazine hydrochloride and 4-bromophenylhydrazine hydrochloride were purchased from Aldrich, 4-isopropylphenylhydrazine hydrochloride and 4-methoxyphenylhydrazine hydrochloride from Acros, 4tert-butylphenylhydrazine hydrochloride as well as 4-iodophenylhydrazine from Lancaster and 1-cyclohexylethanone from Fluka.

Preparation of the Starting Spiroindolium Perchlorates 2 from Hydrazines and Ketones

## a) By an One-pot Procedure.

The spiroindolium perchlorates **2a**, **2c-e**, **2n**, **2p** and **2q** were obtained from *N*-substituted *N*-phenylhydrazines or their hydrochlorides,  $\alpha$ -branched ketones and perchloric acid in boiling ethanol applying a previously reported procedure [25] which combines the hydrazone formation and the Fischer indolization [26] to an one-pot synthesis.

## 1',2'-Dimethylspiro[cyclopentane-1,3'-indolium] Perchlorate (2a).

This compound was obtained from *N*-methyl-*N*-phenylhydrazine, 1-cyclopentylethanone and perchloric acid in 61% yield, mp 210-211° (acetonitrile/ether); <sup>1</sup>H nmr (dimethyl-d<sub>6</sub> sulfoxide):  $\delta$  1.89-2.36 (m, 8H, 3',3'-(CH<sub>2</sub>)<sub>4</sub>), 2.78 (s, 3H, 2'-CH<sub>3</sub>), 3.99 (s, 3H, 1'-CH<sub>3</sub>), 7.60-7.92 (m, 4H, arom-H).

*Anal.* Calcd. for C<sub>14</sub>H<sub>18</sub>ClNO<sub>4</sub>: C, 56.10; H, 6.05; N, 4.67. Found: C, 56.20; H, 6.10; N, 4.51.

#### 1'-Ethyl-2'-methylspiro[cyclohexane-1,3'-indolium] Perchlorate (2c).

This compound was obtained from *N*-ethyl-*N*-phenylhydrazine, 1-cyclohexylethanone and perchloric acid in 74% yield, mp 188-189° (acetonitrile/ether); <sup>1</sup>H nmr (dimethyl-d<sub>6</sub> sulfoxide):  $\delta$  1.40 (t, 3H, 1'-CH<sub>2</sub>CH<sub>3</sub>), 1.44-2.04 (m, 10H, 3',3'-(CH<sub>2</sub>)<sub>5</sub>), 2.81 (s, 3H, 2'-CH<sub>3</sub>), 4.46 (q, 2H, 1'-CH<sub>2</sub>CH<sub>3</sub>), 7.52-8.08 (m, 4H, arom-H).

Anal. Calcd. for  $C_{16}H_{22}$ ClNO<sub>4</sub>: C, 58.62; H, 6.76; N, 4.27. Found: C, 58.70; H, 6.71; N, 4.31.

l'-Isopropyl-2'-methylspiro[cyclohexane-1,3'-indolium] Perchlorate (**2d**).

This compound was obtained from *N*-isopropyl-*N*-phenylhydrazine, 1-cyclohexylethanone and perchloric acid in 68% yield, mp 215-216° (acetonitrile/ether); <sup>1</sup>H nmr (dimethyl-d<sub>6</sub> sulfoxide):  $\delta$  1.67 (d, 6H, 1'-CH(CH<sub>3</sub>)<sub>2</sub>), 1.33-2.05 (m, 10H, 3',3'-(CH<sub>2</sub>)<sub>5</sub>), 2.84 (s, 3H, 2'-CH<sub>3</sub>), 5.11 (m, 1H, 1'-CH(CH<sub>3</sub>)<sub>2</sub>), 7.53-8.11 (m, 4H, arom-H).

*Anal.* Calcd. for C<sub>17</sub>H<sub>24</sub>ClNO<sub>4</sub>: C, 59.73; H, 7.08; N, 4.10. Found: C, 59.80; H, 7.20; N, 4.10.

2'-Methyl-1'-phenylspiro[cyclohexane-1,3'-indolium] Perchlorate (**2e**) [27].

This compound was obtained from *N*,*N*-diphenylhydrazine hydrochloride, 1-cyclohexylethanone and perchloric acid in 61% yield, mp 221-222° (acetonitrile/ether); <sup>1</sup>H nmr (dimethyl-d<sub>6</sub> sulfoxide):  $\delta$  1.52-2.09 (m, 10H, 3',3'-(CH<sub>2</sub>)<sub>5</sub>), 2.64 (s, 3H, 2'-CH<sub>3</sub>), 7.05-8.17 (m, 9H, arom-H).

*Anal.* Calcd. for C<sub>20</sub>H<sub>22</sub>ClNO<sub>4</sub>: C, 63.91; H, 5.90; N, 3.73. Found: C, 64.00; H, 5.92; N, 3.80.

1',2'-Dimethylspiro[cycloheptane-1,3'-indolium] Perchlorate (2n).

This compound was obtained from *N*-methyl-*N*-phenylhydrazine, 1-cycloheptylethanone and perchloric acid in 35% yield, mp 202-203° (acetonitrile/ether); <sup>1</sup>H nmr (dimethyl-d<sub>6</sub> sulfoxide):  $\delta$  1.54-2.09 (m, 12H, 3',3'-(CH<sub>2</sub>)<sub>6</sub>), 2.75 (s, 3H, 2'-CH<sub>3</sub>), 3.89 (s, 3H, 1'-CH<sub>3</sub>), 7.52-7.91 (m, 4H, arom-H).

*Anal.* Calcd. for C<sub>16</sub>H<sub>22</sub>ClNO<sub>4</sub>: C, 58.62; H, 6.76; N, 4.27. Found: C, 58.60; H, 6.95; N, 4.30.

### 1',2'-Dimethylspiro[fluorene-9,3'-indolium] Perchlorate (2p).

This compound was obtained from *N*-methyl-*N*-phenylhydrazine, 1-(9*H*-fluoren-9-yl)ethanone and perchloric acid in 54% yield, mp 201-202° (acetonitrile/ether); <sup>1</sup>H nmr (dimethyl-d<sub>6</sub> sulfoxide):  $\delta$  2.14 (s, 3H, 2'-CH<sub>3</sub>), 4.20 (s, 3H, 1'-CH<sub>3</sub>), 6.88-8.13 (m, 12H, arom-H).

*Anal.* Calcd. for C<sub>22</sub>H<sub>18</sub>ClNO<sub>4</sub>: C, 66.75; H, 4.58; N, 3.54. Found: C, 66.80; H, 4.51; N, 3.60.

1,2-Dimethylspiro[indolium-3,4'-tetrahydrofuran] Perchlorate (**2q**).

This compound was obtained from *N*-methyl-*N*-phenylhydrazine, 1-(tetrahydropyran-4-yl)ethanone and perchloric acid in 40% yield, mp 238-239° (acetonitrile/ether); <sup>1</sup>H nmr (dimethyld<sub>6</sub> sulfoxide):  $\delta$  1.41 (d, 2H, 3,3-(CH<sub>2</sub>CH<sub>2</sub>)<sub>2</sub>O), 2.20 (m, 2H, 3,3-(CH<sub>2</sub>CH<sub>2</sub>)<sub>2</sub>O), 2.75 (s, 3H, 2-CH<sub>3</sub>), 3.91 (s, 3H, 1-CH<sub>3</sub>), 3.95 (m, 4H, 3,3-(CH<sub>2</sub>CH<sub>2</sub>)<sub>2</sub>O), 7.51-8.28 (m, 4H, arom-H).

*Anal.* Calcd. for C<sub>14</sub>H<sub>18</sub>ClNO<sub>5</sub>: C, 53.26; H, 5.75; N, 4.44. Found: C, 58.30; H, 5.80; N, 4.50.

## b) Via Spiroindoles.

The spiroindolium perchlorates **2f-m**, **5** and **8** were prepared from *N*-arylhydrazines or their hydrochlorides and  $\alpha$ -branched ketones by the following two step procedure consisting of a Fischer type reaction [26] to spiroindoles and a subsequent methylation with dimethyl sulfate.

#### Synthesis of the Spiroindoles.

To 20 ml of absolute ethanol, 20 mmoles *N*-arylhydrazine or its hydrochloride, 2.52 g (20 mmoles) 1-cyclohexylethanone and perchloric acid (5.74 g, 40 mmoles, if the free hydrazine is used, 2.87 g, 20 mmoles, in the case of its hydrochloride) were added. The reaction mixture was then magnetically stirred under reflux for two hours, cooled to room temperature and poured into 100 ml of a stirred solution of sodium hydroxide in water (10%). After transfer into a separatory funnel, the product was extracted three times with chloroform (30 ml), the combined organic layers were washed two times with water (50 ml), dried over anhydrous sodium sulfate and the solvent was removed *in vacuo*. The resulting crude spiroindoles were used without further purification for the next reaction step.

Synthesis of Spiroindolium Perchlorates.

The methylation of the spiroindoles was performed in toluene with dimethyl sulfate followed by precipitation of the spiroindolium perchlorates with perchloric acid from an ethanol solution as recently reported [1].

1',2',5'-Trimethylspiro[cyclohexane-1,3'-indolium] Perchlorate (2f).

4-Methylphenylhydrazine hydrochloride was reacted with 1cyclohexylethanone to give 2',5'-dimethylspiro[cyclohexane-1,3'-indole] (yield 95%), which was methylated to **2f**, yield 26%, mp 249-250° (acetonitrile/ether); <sup>1</sup>H nmr (dimethyl-d<sub>6</sub> sulfoxide):  $\delta$  1.32-1.98 (m, 10H, 3',3'-(CH<sub>2</sub>)<sub>5</sub>), 2.42 (s, 3H, 5'-CH<sub>3</sub>), 2.69 (s, 3H, 2'-CH<sub>3</sub>), 3.88 (s, 3H, 1'-CH<sub>3</sub>), 7.40-7.85 (m, 3H, arom-H).

Anal. Calcd. for  $C_{16}H_{22}$ ClNO<sub>4</sub>: C, 58.62; H, 7.25; N, 4.27. Found: C, 58.67; H, 7.10; N, 4.30.

5'-Isopropyl-1',2'-dimethylspiro[cyclohexane-1,3'-indolium] Perchlorate (**2g**).

4-Isopropylphenylhydrazine was reacted with 1-cyclohexylethanone to give 5'-isopropyl-2'-methylspiro[cyclohexane-1,3'-indole] (yield 96%), which was methylated to **2g**, yield 39%, mp 186-187° (acetonitrile/ether); <sup>1</sup>H nmr (dimethyl-d<sub>6</sub> sulfoxide):  $\delta$  1.21 (d, 6H, 5'-CH(CH<sub>3</sub>)<sub>2</sub>), 1.34-2.00 (m, 10H, 3',3'-(CH<sub>2</sub>)<sub>5</sub>), 2.71 (s, 3H, 2'-CH<sub>3</sub>), 3.06 (m, 1H, 5'-CH(CH<sub>3</sub>)<sub>2</sub>), 3.90 (s, 3H, 1'-CH<sub>3</sub>), 7.48-7.82 (m, 3H, arom-H).

*Anal.* Calcd. for C<sub>18</sub>H<sub>26</sub>ClNO<sub>4</sub>: C, 60.75; H, 7.36; N, 3.94. Found: C, 60.80; H, 7.31; N, 3.80.

5'-*tert*-Butyl-1',2'-dimethylspiro[cyclohexane-1,3'-indolium] Perchlorate (**2h**).

4-*tert*-Butylphenylhydrazine hydrochloride was reacted with 1-cyclohexylehanone to give 5'-*tert*-butyl-2'-methylspiro-[cyclohexane-1,3'-indole] (yield 94 %), which was methylated to **2h**, yield 43%, mp 267-268° (acetonitrile/ether); <sup>1</sup>H nmr (dimethyl-d<sub>6</sub> sulfoxide):  $\delta$  1.31 (s, 9H, 5'-C(CH<sub>3</sub>)<sub>3</sub>), 1.33-2.01 (m, 10H, 3',3'-(CH<sub>2</sub>)<sub>5</sub>), 2.72 (s, 3H, 2'-CH<sub>3</sub>), 3.90 (s, 3H, 1'-CH<sub>3</sub>), 7.62-7.88 (m, 3H, arom-H).

*Anal.* Calcd. for C<sub>19</sub>H<sub>28</sub>ClNO<sub>4</sub>: C, 61.70; H, 7.63; N, 3.79. Found: C, 61.80; H, 7.50; N, 3.80.

5'-Methoxy-1',2'-dimethylspiro[cyclohexane-1,3'-indolium] Perchlorate (**2i**).

4-Methoxyphenylhydrazine hydrochloride was reacted with 1cyclohexylethanone to give 5'-methoxy-2'-methylspiro-[cyclohexane-1,3'-indole] (yield 84%), which was methylated to **2i**, yield 26%, mp 223-224° (acetonitrile/ether); <sup>1</sup>H nmr (dimethyl-d<sub>6</sub> sulfoxide):  $\delta$  1.32-1.99 (m, 10H, 3',3'-(CH<sub>2</sub>)<sub>5</sub>), 2.65 (s, 3H, 2'-CH<sub>3</sub>), 3.82 (s, 3H, 5'-OCH<sub>3</sub>), 3.86 (s, 3H, 1'-CH<sub>3</sub>), 7.12-7.81 (m, 3H, arom-H).

*Anal.* Calcd. for C<sub>16</sub>H<sub>22</sub>ClNO<sub>5</sub>: C, 55.90; H, 6.45; N, 4.07. Found: C, 55.91; H, 6.40; N, 4.01. 5'-Fluoro-1',2'-dimethylspiro[cyclohexane-1,3'-indolium] Perchlorate (**2j**).

4-Fluorophenylhydrazine hydrochloride was reacted with 1cyclohexylethanone to give 5'-fluoro-2'-methylspiro-[cyclohexane-1,3'-indole] (yield 85%), which was methylated to **2j**, yield 59%, mp 242-243° (acetonitrile/ether); <sup>1</sup>H nmr (dimethyl-d<sub>6</sub> sulfoxide):  $\delta$  1.38-2.03 (m, 10H, 3',3'-(CH<sub>2</sub>)<sub>5</sub>), 2.72 (s, 3H, 2'-CH<sub>3</sub>), 3.92 (s, 3H, 1'-CH<sub>3</sub>), 7.42-7.97 (m, 3H, arom-H).

Anal. Calcd. for  $C_{15}H_{19}CIFNO_4$ : C, 54.30; H, 5.77; N, 4.22. Found: C, 54.10; H, 5.80; N, 4.21.

5'-Chloro-1',2'-dimethylspiro[cyclohexane-1,3'-indolium] Perchlorate (**2k**).

4-Chlorophenylhydrazine hydrochloride was reacted with 1-cyclohexylethanone to give 5'-chloro-2'-methylspiro-[cyclohexane-1,3'-indole] (yield 88%), which was methylated to **2k**, yield 61%, mp 185-186° (dec) (acetonitrile/ether); <sup>1</sup>H nmr (dimethyl-d<sub>6</sub> sulfoxide):  $\delta$  1.38-2.02 (m, 10H, 3',3'-(CH<sub>2</sub>)<sub>5</sub>), 2.74 (s, 3H, 2'-CH<sub>3</sub>), 3.91 (s, 3H, 1'-CH<sub>3</sub>)), 7.67-8.08 (m, 3H, arom-H).

Anal. Calcd. for  $C_{15}H_{19}Cl_2NO_4$ : C, 51.74; H, 5.50; N, 4.02. Found: C, 51.80; H, 5.38; N, 4.00.

5'-Bromo-1',2'-dimethylspiro[cyclohexane-1,3'-indolium] Perchlorate (**2l**).

4-Bromophenylhydrazine hydrochloride was reacted with 1-cyclohexylethanone to give 5'-bromo-2'-methylspiro-[cyclohexane-1,3'-indole] (yield 95%), which was methylated to **2l**, yield 43%, mp 305-306° (dec) (acetonitrile/ether); <sup>1</sup>H nmr (dimethyl-d<sub>6</sub> sulfoxide):  $\delta$  1.83-2.01 (m, 10H, 3',3'-(CH<sub>2</sub>)<sub>5</sub>), 2.73 (s, 3H, 2'-CH<sub>3</sub>), 3.90 (s, 3H, 1'-CH<sub>3</sub>), 7.85-8.19 (m, 3H, arom-H).

*Anal.* Calcd. for C<sub>15</sub>H<sub>19</sub>BrClNO<sub>4</sub>: C, 45.88; H, 4.88; N, 3.57. Found: C, 45.80; H, 4.80; N, 3.60.

5'-Iodo-1',2'-dimethylspiro[cyclohexane-1,3'-indolium] Perchlorate (**2m**).

4-Iodophenylhydrazine was reacted with 1-cyclohexylethanone to give 5'-iodo-2'-methylspiro[cyclohexane-1,3'-indole] (yield 89%), which was methylated to **2m**, yield 37%, mp 285-286° (dec) (acetonitrile/ether); <sup>1</sup>H nmr (dimethyl-d<sub>6</sub> sulfoxide):  $\delta$ 1.37-2.02 (m, 10H, 3',3'-(CH<sub>2</sub>)<sub>5</sub>), 2.71 (s, 3H, 2'-CH<sub>3</sub>), 3.88 (s, 3H, 1'-CH<sub>3</sub>), 7.69-8.31 (m, 3H, arom-H).

*Anal.* Calcd. for C<sub>15</sub>H<sub>19</sub>ClINO<sub>4</sub>: C, 40.98; H, 4.36; N, 3.19. Found: C, 41.00; H, 4.31; N, 3.20.

2',3'-Dimethylspiro[cyclohexane-1,1'-benzo[e]indolium] Perchlorate (**5**).

2-Naphthylhydrazine was reacted with 1-cyclohexylethanone to give 2'-methylspiro[cyclohexane-1,1'-benzo[*e*]indole] (yield 96%), which was methylated to **5**, yield 47%, mp 258-259° (acetonitrile/ether); <sup>1</sup>H nmr (dimethyl-d<sub>6</sub> sulfoxide):  $\delta$  1.74-1.95 (m, 10H, 1',1'-(CH<sub>3</sub>)<sub>5</sub>), 2.99 (s, 3H, 2'-CH<sub>3</sub>), 4.04 (s, 3H, 3'-CH<sub>3</sub>), 7.65-8.35 (m, 6H, arom-H).

*Anal.* Calcd. for C<sub>19</sub>H<sub>22</sub>ClNO<sub>4</sub>: C, 62.72; H, 6.03; N, 3.85. Found: C, 62.70; H, 6.00; N, 3.90.

1',2'-Dimethylspiro[cyclohexane-1,3'-benzo[g]indolium] Perchlorate (8).

1-Naphthylhydrazine was reacted with 1-cyclohexylethanone to give 2'-methylspiro[cyclohexane-1,3'-benzo[g]indole] (yield

96%), which was methylated to **8**, yield 5%, mp 254-255° (acetonitrile/ether); <sup>1</sup>H nmr (dimethyl-d<sub>6</sub> sulfoxide):  $\delta$  1.40-2.09 (m, 10H, 3',3'-(CH<sub>2</sub>)<sub>5</sub>), 2.83 (s, 3H, 3'-CH<sub>3</sub>), 4.40 (s, 3H, 1'-CH<sub>3</sub>), 7.61-8.73 (m, 6H, arom-H).

*Anal.* Calcd. for C<sub>19</sub>H<sub>22</sub>ClNO<sub>4</sub>: C, 62.72; H, 6.09; N, 3.85. Found: C, 62.70; H, 6.15; N, 3.95.

Synthesis of the Dispiro Compounds **4**, **7** and **10** from 2,4,6-Triarylpyrylium Perchlorates **1** and Spiroindolium Perchlorates **2**, **5** and **8**.

General Procedure (cf. Tables 1 and 2).

To absolute ethanol (30 ml) 5 mmoles pyrylium perchlorate 1, 5 mmoles spiroindolium perchlorate 2/5/8, triethylamine (1.51 g, 15 mmoles) and acetic acid (0.60 g, 10 mmoles) were added. The reaction mixture was then refluxed for two hours. The dispiro compounds 4/7/10 formed crystallized in some cases from the hot reaction mixture. Otherwise their crystallization was initiated by cooling. They were filtered by suction, washed with ethanol and recrystallized from ethanol/toluene.

### Acknowledgement.

The financial support by the Deutsche Forschungsgemeinschaft is gratefully appreciated.

## REFERENCES AND NOTES

[1] Part **XX**: T. Zimmermann, *J. Heterocyclic Chem.*, **37**, 885 (2000).

[2] H. C. van der Plas, *J. Heterocyclic Chem.*, **37**, 437 (2000) and references cited therein.

[3a] A. T. Balaban, A. Dinculescu, G. N. Dorofeenko, G. W.
Fischer, A. V. Koblik, V. V. Mezheritskii and W. Schroth, Pyrylium Salts. Syntheses, Reactions and Physical Properties, Advances in Heterocyclic Chemistry, Suppl 2, Academic Press, New York, 1982;
[b] W. Schroth, W. Dölling and A. T. Balaban, in Houben-Weyl, Vol E7b, R. P. Kreher, ed, Thieme, Stuttgart, 1992, pp 755-1014.

[4] For a recent review on indoles and their derivatives see: H. Döpp, D. Döpp, U. Langer and B. Gerding, in Houben-Weyl, Vol **E6b<sub>1</sub>/E6b<sub>2</sub>**, R. P. Kreher, ed, Thieme, Stuttgart, 1994, pp 546-1354.

[5] T. Zimmermann and M. Pink, J. Prakt. Chem./Chem.-Ztg., 337, 368 (1995).

[6a] O. Brede, L. Goebel and T. Zimmermann, J. Inf. Rec. Mater., 22, 397 (1996); [b] L. Goebel, O. Brede and T. Zimmermann, Radiat. Phys. Chem., 47, 369 (1996); [c] O. Brede, L. Goebel and T. Zimmermann, J. Phys. Chem. A, 101, 4103 (1997); [d] T. Häupl, T. Zimmermann, R. Hermann and O. Brede, Chem. Phys. Lett., 291, 215 (1998); [e] T. Häupl, T. Zimmermann, R. Hermann and O. Brede, *J. Phys. Chem. A*, **103**, 6904 (1999).

[7] T. Zimmermann and U. Abram, *J. Heterocyclic Chem.*, **36**, 1223 (1999).

[8] Reviews on 2*H*-pyrans: [a] J. Kuthan, *Adv. Heterocyclic Chem.*, **34**, 145 (1983); [b] J. Kuthan, P. Sebek and S. Böhm, *Adv. Heterocyclic Chem.*, **62**, 20 (1995); [c] K. Ohketa and K.-Y. Akiba, *Adv. Heterocyclic Chem.*, **65**, 283 (1996).

[9] For a detailed description of the reaction mechanism and an explanation of the diastereoselectivity *cf.* ref [5].

[10] For the classification of pyrylium ring transformations see ref [3a].

[11] M. Hesse, H. Meier and B. Zeeh, Spektroskopische Methoden in der organischen Chemie, Thieme, Stuttgart, New York, 1997, p 116.

[12] A. Günzler and H. Böck, IR-Spektroskopie, VCH, Weinheim, 1990, p 233.

[13] A. T. Balaban and C. Toma, *Tetrahedron*, Supplement **7**, 1 (1966).

[14] A. Mistr, M. Vavra, J. Skoupy and R. Zahradnik, *Collect. Czech. Chem. Commun.*, **37**, 1520 (1972).

[15] R. Wizinger, S. Losinger and P. Ulrich, *Helv. Chim. Acta*, **39**, 5 (1956).

[16] K. Dimroth, C. Reichardt, T. Siepmann and F. Bohlmann, *Liebigs Ann. Chem.*, **661**, 1 (1963).

[17] G. N. Dorofeenko, S. V. Krivun and V. V. Mezheritskii, *Zh. Obshch. Khim.*, **35**, 632 (1963).

[18] G. W. Fischer and M. Herrmann, J. Prakt. Chem., **326**, 287 (1984).

[19] R. F. Smith, L. A. Olson, W. J. Ryan, K. J. Coffman, J. M. Galante, F. S. Wojdan, P. A. Mallardi and T. P. Eckert, *Synth. Commun.*, **16**, 585 (1986).

[20] E. Fischer, Liebigs Ann. Chem., 232, 236 (1886).

[21] C. G. Overberger and A. Lebovitz, J. Am. Chem. Soc., **76**, 2722 (1954).

[22a] S. L. Friess and R. Pinson, jr, J. Am. Chem. Soc., 74, 1302 (1952);
 [b] M. S. Newman and W. T. Booth, J. Am. Chem. Soc., 67, 154 (1945).

[23] I. Von and E. C. Wagner, J. Org. Chem., 9, 155 (1944).

[24] H. R. Henze and R. L. McKee, J. Am. Chem. Soc., 64, 1672 (1942).

[25] T. Zimmermann, J. Heterocyclic Chem., 37, 1571 (2000).

[26] Reviews on the Fischer indole synthesis: [a] B. Robinson, *Chem. Rev.*, **63**, 373 (1963); [b] B. Robinson, *Chem. Rev.*, **69**, 227 (1969); [c] B. Robinson, The Fischer Indole Synthesis, Wiley, New York, 1982; [d] D. L. Hughes, *Org. Prep. Proced. Int.*, **25**, 607 (1993).

[27] F. Brandl, PhD Thesis, University of Regensburg, Germany, 2000.